
Using Bayesian Optimization for Hardware/Software
Co-Design of Neural Accelerators

Zhan Shi, Chirag Sakhuja
The University of Texas at Austin

{zshi17, chirag.sakhuja}@utexas.edu

Milad Hashemi, Kevin Swersky
Google Research

{miladh, kswersky}@google.edu

Calvin Lin
The University of Texas at Austin

lin@cs.utexas.edu

Abstract

The use of deep learning has grown at an exponential rate, giving rise to numerous
specialized hardware and software systems for deep learning. Because the design
space of deep learning software stacks and hardware accelerators is diverse and vast,
prior work considers software optimizations separately from hardware architectures,
effectively reducing the search space. Unfortunately, this bifurcated approach
means that many profitable design points are never explored. This paper instead
casts the problem as hardware/software co-design, with the goal of automatically
identifying desirable points in the joint design space. The key to our solution is
a new constrained Bayesian optimization framework that avoids invalid solutions
by exploiting the highly constrained features of this design space, which are semi-
continuous/semi-discrete. We evaluate our optimization framework by applying
it to a variety of neural models, improving the energy-delay product by 18%
(ResNet) and 40% (DQN) over hand-tuned state-of-the-art systems, as well as
demonstrating strong results on other neural network architectures, such as MLPs
and Transformers.

1 Introduction
The compute requirements of deep learning are growing at a double exponential rate [11]. There are
opportunities to increase DNN efficiency at each layer of the deep learning stack, from improved
neural network architectures [24], to deep learning compilers that increase software efficiency [3],
to specialized DNN accelerators that increase hardware efficiency [4, 5]. In this paper, we consider
two components from the deep learning stack: the hardware accelerator and the software compiler
that maps a model onto that hardware, with the goal of automatically optimizing the energy × delay
product of executing a particular model on a hardware accelerator. This area is commonly referred
to as hardware/software co-design, and since it requires human expertise from multiple disciplines
(software engineers, compiler writers, hardware architects), it is typically driven by manual heuristics
or heuristic-based search [27].

We take a different approach, recognizing that for a given DNN model, this hardware/software
co-design can be framed as a joint search of the space of all of the valid mappings and hardware
architectures that can correctly execute the model. We formally parameterize this space based on
prior work [19], and we find that standard optimization techniques are ill-suited to the exploration of
the parameterized space because the vast majority of the points in the space are infeasible.

Our solution is to cast the search as a bilevel optimization problem. The outer loop optimizes over
hardware architectures, while the inner loop optimizes over software mappings for a given architecture.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Both of these are heavily constrained black-box global optimization problems that require expensive
simulations to obtain performance estimates. We therefore propose a nested, constrained Bayesian
optimization (BO) formulation that uses Bayesian models of hardware and software performance to
guide the search towards promising regions of the design space.

We find that when compared against the state-of-the-art manually-designed hardware accelerators
that use heuristic software mappings, our BO-based approach provides significant improvements,
improving the energy-delay product (EDP) by 16.0% to 40.2% on a series of neural networks.

2 Related Work
This section describes prior work in the hardware and software optimizations for DNNs.

2.1 Hardware to Optimize DNNs
Prior work has designed specialized hardware to execute BLAS kernels. Google’s TPU [15] uses
large hardware structures called systolic arrays [16], and NVIDIA’s GPUs have tensor cores [1].
Acclerators such as Eyeriss [5] and focus on CNNs, introducing a specific dataflow that exploits a
reuse pattern exhibited by 2D convolutions. Recent work [27] recognizes that the design space of
specialized hardware is vast and proposes heuristics that can be leveraged to automatically synthesize
hardware using a domain-specific language, Halide.

2.2 Software to Optimize DNNs
Software optimization process has been recognized as a search problem, and compilers such as
TVM [3] have used learned cost models to optimize execution efficiency. Similarly, Timeloop uses a
grid or random search to optimize software mappings on a user-specified hardware architecture [19].
However, all software optimizers treat hardware as a black box without explicitly considering the
interaction between hardware and software.

Ours is the first work that systematically explores the space of both hardware and software opti-
mizations; this larger search space requires a more principled search method, which motivates our
constrained Bayesian optimization framework.

3 A Formal Representation of Software and Hardware
Hardware/software co-design is typically performed manually based on human insight, heuristics,
and intuition. To facilitate an intelligent automation, this section formally defines the hardware and
software design spaces.

3.1 Parameterizing the Design Space
Software design points can be parameterized by the loop ordering, loop tiling, and computational
parallelism of the seven-level loop nest used to compute a convolutional layer (see appendix) [19, 27].
These software parameters are subject to hardware constraints, such as the quantity and layout of
processing elements (PEs) and the size of storage elements.

Hardware parameters are generally more specific to the low-level resource and memory configurations
or the layout of PEs. These can be broken down into a two broad categories:

Resource configurations represent the physical aspects of hardware, such as buffer sizes, tile sizes,
and the cluster size of global buffers, as well as the layouts of the PE array and of the global buffer.

Dataflow configurations represent the usage of the PE array that are implemented in hardware,
such as the blocking factors and degree of parallelism at the PE level, which also determines the
communication patterns among PEs.

The appendix also shows the full listing of the parameters that we optimize.

3.2 Constraints in the Design Space
Hardware designs are fundamentally constrained by area (the total amount of compute and storage
resources) and factors such as available memory bandwidth. For a specific hardware accelerator,
the software optimization problem can be viewed as a search for the most efficient use of available
hardware PEs and buffers. For example, the loop blocking optimization factors a neural network
across multiple hardware storage buffers—and the feasible factorizations are constrained by the size
of the hardware buffers.

2



4 Bayesian Optimization for Hardware/Software Co-design
Available Hardware Resources

Compute
Global

Storage
PE

PEPE

PE Global
Local

DRAM

Hardware
Optimizer

Hardware Budget
(input constraints)

Model Zoo

ResNet

Transformer

MLP

DQN
Interconnect,
etc.

...

Layerwise
Software Optimizer

Target Model
(input constraints)

Hardware

Generate Hardware
(input constraints)

1

Code

Generate a Mapping
2

Compute Cost
3

Hardware Feedback
(output constraints)

4

n layers

HW
SW

// pick a target model (e.g. ResNet) and hardware budget
target = “ResNet”
// hardware optimization loop
for i = 1 : number of hardware trials
       hardware BO optimizer generates hardware hi
    // software optimization loop
    for j = 1 : number of layers in target
        // get Layer_EDP on hi
        for k = 1 : number of software trials
              software BO optimizer generates a mapping sijk
              evaluate mapping sijk on hardware hi as
                Layer_EDP and feed back to layerwise
                software BO optimizer
    // compute Model_EDP on hi
       compute Model_EDP on hi as sunm of best layerwise EDP
                    and feed back to hardware BO optimizermink  j∑ (sijk)

3

4

2

1

Figure 1: Overview of BO-based nested search for hardware/software co-design.

4.1 Overview of Nested Hardware/Software Optimization
We propose a nested approach for co-optimizing hardware/software parameters. The overall approach
is outlined in Figure 1. The goal is to find the optimal hardware parameters for a neural model and
the optimal set of software parameters for each layer in the neural model.

Specifically, let xh and xs denote the set of hardware and software parameters. In the nested search
process, we first use the hardware optimizer to generate a design of hardware. In particular, we
perform the hardware search in the space of possible hardware Sh to optimize all hardware parameters,
where the objective is to minimize f(xh | NN) which we define as the energy-delay product (EDP)
of running the neural network (NN) model on the given hardware. This step produces a hardware
specification and can be formalized as argminh∈Sh

f(xh | NN).

For the chosen hardware design, our framework performs the software search for each individual
neural layer in its constrained software mapping space Ss|h,NNj to optimize the mapping parameters,
where NNj denotes the jth layer in the neural network model, and the objective becomes f(xs |
xh,NNj), which is defined as the EDP of running the layer j on the fixed hardware. This step
produces a design point that represents the best set of software mappings for each layers on the given
hardware structure, and can be formalized as argmins∈Ss|hf(xs | xh). The layerwise EDPs are then
summed up as the EDP of the neural model, which is fed back to the hardware optimizer to generate
the next hardware setting.

The iterative search between hardware and software will repeat for a user-defined number of trials. In
this work, we set 50 for hardware search and 250 for software search. In our Bayesian optimization
(BO) framework, we use separate BO models to search in the hardware and software space. We now
describe their design considerations.

4.2 BO for Optimizing Hardware Architectures
Kernel design. The main design choice for BO is the GP kernel to use. For the hardware search,
we choose a linear kernel on top of feature transformations that represent the relationship between the
different parameters. We also add a noise kernel to deal with noise in the hardware evaluation. This
is because the software optimizer is not guaranteed to find the best software mapping for each layer.

Constraints. There are both known and unknown constraints in the hardware search. The known
constraints, such as the compute and storage budget, are treated as input constraints that reject invalid
samples. The unknown constraints have to do with feasibility (if there exists valid software mappings
of neural layers onto the hardware). These constraints are treated as output constraints and are
modeled by a GP with a squared exponential kernel.

4.3 BO for Optimizing Software Mappings
Kernel design. Similar to hardware optimization, we use a linear kernel and transform the parame-
ters to features that encode relational information. The evaluation of a mapping on a given hardware
is deterministic in our infrastructure, thus there is no need for a noise kernel in the GPs.

Constraints. As both the hardware and neural model are known during software optimization, all
constraints are known and are treated as input constraints that automatically reject invalid samples.

5 Evaluation
5.1 Methodology
Infrastructure. We conduct our evaluation on Timeloop [19], which is an open-source infras-
tructure for evaluating the hardware design and software optimization of DNN accelerators. In the

3



evaluation, Timeloop takes two inputs: the hardware configuration and the software mapping. We
limit the use case to inference in this work and leave training for future work.

Workloads. We use our BO framework to optimize critical layers from CNNs (ResNet [8] and
DQN [18]), as well as an MLP and Transformer [26].

Experimental Setup. We use Eyeriss [5], a state-of-the-art DNN accelerator, as our main baseline.
In the software mapping search, we use Eyeriss’s hardware specifications and search for the best
software mapping for each neural layer. In the hardware search, we perform the search under the
same compute and storage resource constraints as Eyeriss for each neural model.

Metrics. We adopt the widely used energy-delay product (EDP) as the objective. As the actual
EDP values vary across an order of magnitude, we normalize by dividing by the best (minimal) EDP
value, and take the reciprocal for optimization curves.

Baselines. In hardware search, we compare against constrained random search that repeatedly takes
the first random sample in the design space that satisfies the constraints. In software search, we
compare against constrained random search, and out-of-the-box BO and two TVM variants [3].

5.2 Software Mapping Optimization
We show the results of software mapping optimization first, as the capability of finding a good
mapping is the base of evaluating a hardware design. Figure 2 shows the improvements of BO over
all baselines.

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(a) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(b) DQN-K2

0 200 400 600 800 1000
Number of trials

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(c) MLP-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(d) Transformer-K2

Figure 2: Software mapping optimization on layer 2 of ResNet, DQN, MLP, and Transformer. The
y-axis shows the reciprocal of energy-delay product (EDP) (normalized against the best EDP value).
Higher is better. Results for other layers can be found in the appendix. Best viewed in color.

5.3 Hardware Configuration Optimization
Figure 3 shows the optimization curves for hardware/software co-design. The comparison of hardware
search algorithms shows that BO provides consistently better performance than the constrained
random search, and the comparison of software search algorithms shows the importance of mapping
optimization in the co-design process. We find that the designs searched by BO achieve significantly
better EDP on all neural models compared to the state-of-the-art manually designed accelerator
(18.3%, 40.2%, 21.8% and 16.0% for ResNet, DQN, MLP and Transformer respectively).

0 10 20 30 40 50
Number of trials

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(a) ResNet

0 10 20 30 40 50
Number of trials

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(b) DQN

0 10 20 30 40 50
Number of trials

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(c) MLP

0 10 20 30 40 50
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO(HW) + BO(SW)
Random(HW) + BO(SW)
BO(HW) + Random(SW)
Random(HW) + Random(SW)

(d) Transformer

Figure 3: Hardware/software co-optimization. The x-axis shows the number of trials for hardware
search. Best viewed in color.
6 Conclusion
In this paper, we have cast hardware/software co-design as a Bayesian optimization problem. We have
shown that standard mechanisms have difficulty navigating the complex, highly constrained design
space, so we have presented a novel constrained formulation that allows the optimizer to efficiently
identify desirable points in this design space. The techniques described here are not limited to DNN
architectures, which is significant because as we enter the golden age of computer architecture [9], it
is essential that we develop automatic mechanisms for architectural exploration that quickly produce
custom hardware accelerators.

4



References
[1] NVIDIA Tesla V100 GPU Architecture, The World’s Most Advanced Data Center GPU. NVIDIA

Corporation, 2017.

[2] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[3] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Learning to optimize tensor programs. In Advances in Neural Information
Processing Systems, pages 3389–3400, 2018.

[4] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam.
Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings
of the 19th international conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 269–284, 2014.

[5] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient dataflow
for convolutional neural networks. ACM SIGARCH Computer Architecture News, 44(3):367–379, 2016.

[6] Peter I Frazier. Knowledge-gradient methods for statistical learning. PhD thesis, Citeseer, 2009.

[7] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown constraints.
Uncertainty in Artificial Intelligence, 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[9] John L Hennessy and David A Patterson. A new golden age for computer architecture. Communications of
the ACM, 62(2):48–60, 2019.

[10] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13(Jun):1809–1837, 2012.

[11] Danny Hernandez and Tom B. Brown. Measuring the algorithmic efficiency of neural networks, 2020.

[12] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. In Advances in neural information processing
systems, pages 918–926, 2014.

[13] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International conference on learning and intelligent optimization, pages
507–523. Springer, 2011.

[14] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[15] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA), pages 1–12, 2017.

[16] HT Kung and Charles E Leiserson. Systolic arrays (for vlsi). In Sparse Matrix Proceedings 1978, volume 1,
pages 256–282. Society for industrial and applied mathematics, 1979.

[17] Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy, et al. Constrained bayesian optimization
with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[19] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying, Anurag Mukkara,
Rangharajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A systematic
approach to dnn accelerator evaluation. In 2019 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 304–315. IEEE, 2019.

[20] Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

5



[21] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human
out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.

[23] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

[24] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks,
2019.

[25] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[27] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao, Heonjae
Ha, Priyanka Raina, et al. Interstellar: Using halide’s scheduling language to analyze dnn accelerators.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 369–383, 2020.

6



7 Bayesian Optimization
7.1 Overview
Bayesian optimization [14, 2, 21] is an effective approach for the optimization of expensive, possibly noisy black-
box functions. BO has been successfully used for hyperparameter optimization [22], algorithm configuration
[13], optimizing A/B experiments [17], and more. For our problem, we have a parameterized representation and
access to a simulator. Since one of our main concerns is sample efficiency, Bayesian optimization is particularly
suitable.

The actual cost of evaluation depends on the experimental infrastructure, but in general, the evaluation is much
more expensive on hardware than software. For example, the evaluation of a hardware design choice requires
a faithful hardware implementation and a search for the optimal software mappings, a process that can take
hours (with a simulator or FPGA) to days or even months (with an ASIC). By contrast, the cost of applying a
list of software mappings and running the transformed workload is relatively low, ranging from seconds (in a
simulator) to minutes (on a real hardware, FPGA or ASIC).

Bayesian optimization has two major components: 1) a surrogate model provides a Bayesian posterior probability
distribution that predicts potential values of the objective function. 2) an acquisition function uses the model to
identify the next point to evaluate.

7.2 Gaussian processes
A common surrogate model is a Gaussian process (GP) due to its simplicity and flexibility. A GP is prior
distribution over the space of functions that is comprised of a mean function m(x) and a covariance, or
kernel function k(x,x′). Suppose we are given a dataset of N input/output pairs over a bounded domain
Ω with D input dimensions and scalar outputs. For brevity, we write this as (X,y), where X ∈ ΩN×D

and y ∈ RN . The posterior predictive distribution over function values f for a new input x is given by
P (f | x, X,y) = N (µ(x), σ2(x)), where

µ(x) = KxXK
−1
XX(y −mX) +m(x),

σ2(x) = k(x,x)−KxXK
−1
XXK

>
xX .

Where KXX is a matrix formed by evaluating the kernel on X , KxX is the vector of kernel evaluations between
x and X , and mX is the vector of mean function evaluations on the input dataset.

A common choice for the kernel is squared exponential. Given two input vectors xi and xj , this is defined as

k(xi,xj) = α2 exp
(
− ‖xi−xj‖2

`2

)
. α and ` are kernel hyperparameters.

Another kernel that we find particularly useful is a linear kernel on top of explicit features. Given a feature
mapping φ(x) : RD → RK , the linear kernel can be written as k(xi,xj) = φ(xi)

>φ(xj). When we have
strong prior information about the relevant feature interactions that govern the black-box function, this kernel
allows us to encode these interactions directly and produces a more sample-efficient posterior estimate.

In cases where the observations from the black-box function are noisy, we can add a noise kernel Knoise = τ2I
to KXX , where τ2 is a hyperparameter. This implies a Gaussian observation likelihood.

Following common practice, we use a relatively simple mean function. In particular, we use the constant mean
m(x) = c ∀ x. All kernel and mean hyperparameters are learned by maximizing the marginal likelihood of
the GP on the current dataset.

7.3 Acquisition functions
A critical component in the BO framework is the choice of acquisition function a(·) that assigns each design
point a value that represents the utility of testing this point. Two commonly used acquisition functions are
expected improvement (EI) and lower confidence bound (LCB).

EI computes the amount we expect to improve upon the current best observed objective value y∗ ≡ max{yi}Ni=1

by evaluating a design point x. Formally, it can be written as

aEI(x) =

∫ ∞
−∞

max(y∗ − f, 0)P (f | x, X,y)df.

where f is the latent function from the surrogate model, and y∗ is the best value observed.

LCB [23] provides an explicit tradeoff between the predictive mean and variance and is defined as

aLCB(x) = µ(x) + λσ(x).

Where λ represents a tradeoff parameter. A small λ promotes greater exploitation, and a large λ promotes greater
exploration. We found λ = 1 to work well in our experiments. Beyond these, there are many other possible
acquisition functions that could be used in future exploration [25, 10, 12, 6].

7



7.4 Constraints
In our problem, the vast majority of the design space will produce invalid solutions. When the constraints are a
known function of the input features, we can directly account for them as input constraints. Otherwise, we must
run the simulation and treat invalid points using an output constraint. Here, we will describe these constraint
types, and how they are incorporated into BO.

Input constraints are explicit constraints that are used when optimizing the acquisition function. They directly
prevent the search from suggesting points that will violate the constraints. As some constraints are non-linear,
this optimization is itself very challenging. We optimize the acquisition function in a crude way by performing
rejection sampling on the design space: we randomly sample parameters until we obtain 150 feasible points,
and then choose the one the maximizes the acquisition function. On average the sampling takes 22K random
samples to get a pool of 150 feasible points.

Output constraints are used when we do not know the form of the constraint a-priori and must run the simulator
to test feasibility. This is also referred to as an “unknown” constraint, and BO has been adapted to incorporate
a constraint model in addition to the regression model [7]. These simultaneously learn about the constraint
boundaries while modeling the objective.

Let C(x) denote the event that x satisfies constraint C. Constrained BO uses a Bayesian classifier to model
P (C(x)). It is relatively straightforward to adapt a GP regressor to classification [20].

Under a Bayesian classifier, the acquisition function a(x) is modified to account for the probability that the
constraint is satisfied, with 0 utility if it is not satisfied.

ā(x) = E[a(x)I[C(x)]] = P (C(x))a(x).

Where I[C(x)] is the indicator function that evaluates to 1 if the constraint is satisfied and 0 otherwise. We
therefore maintain two models: one regression model to capture the objective and one classifier to model the
constraint in order to avoid evaluations in infeasible regions.

8 Parameters and constraints

Type Index Hardware Parameters Valid Range Meaning

PE
H1 PE mesh-X Factors of # PEs Decide the arrangement of the 2-D 

PE array.H2 PE mesh-Y Factors of # PEs

Local 
buffer

H3
Input entries in Local 

buffer 
0 to # local buffer 

entries Decide the partition of local buffer. 
The partition leads to sub-buffers 
with inflexible sizes. This is useful 
as the latency to access each 
smaller sub-buffer decreases.

H4 weights entries in Local 
buffer 

0 to # local buffer 
entries

H5
outputs entries in Local 

buffer 
0 to # local buffer 

entries

Global 
buffer

H6 Global buffer instances Factors of #PEs Determine the arrangement of 
global buffer, and its connection 
between global buffer and per PE’s 
local buffer (Local buffer of PEs 
along the X-axis shares the 
instances of global buffer along the 
X-axis).

H7 Global buffer mesh-X Factors of PE-mesh-X

H8 Global buffer mesh-Y Factors of PE-mesh-Y

H9 Global buffer block size Factors of 16
Determines the width of a global 
buffer entry

H10 Global buffer cluster size Factors of 16
Determines of the number of 
wider structures where multiple 
entries are ganged into

Dataflow
H11

Dataflow option of filter 
width 1, 2

Options that determine the size of 
filter width in PE’s local buffer

H12 Dataflow option of filter 
height

1, 2 Options that determine the size of 
filter height in PE’s local buffer

Figure 4: Hardware parameters.

9 Hyperparamters for BO

In Figure 8 we report the hyperparamters for BO.

8



Type Hardware Constraints

PE PE mesh-X (H1) * PE mesh-Y (H2)  = # PEs

Local buffer The sum of local sub-buffers (H3, H4, H5) does not exceed buffer size

Global buffer Global buffer mesh-X (H7) * global buffer mesh-Y (H8) =  # Global buffer instances (9)

Local buffer & global buffer
(unknown)

A valid software mapping exists depending mainly on local buffer partition (H3, H4, 
H5) and global buffer arrangement (H6, H7, H8)

Figure 5: Hardware constraints.

Type Index Software Parameters Valid Range Meaning

Loop blocking and 
degree of parallelism

S1 Blocking factors of R Factors of R Determines the size 
(parallelism) of each type 
of data (inputs, weights 

and outputs) in each 
storage layer (except 
those that are in the 
hardware dataflow).

S2 Blocking factors of S Factors of S

S3 Blocking factors of P Factors of P

S4 Blocking factors of Q Factors of Q

S5 Blocking factors of C Factors of C

S6 Blocking factors of K Factors of K

Loop reorder

S7 Loop order in local buffer
Permutations of 

non-1 factors Affects the reuse of each 
type of data (inputs, 

weights and outputs) in 
each storage layer.

S8 Loop order in global buffer
Permutations of 

non-1 factors

S9 Loop order in DRAM
Permutations of 

non-1 factors

Figure 6: Software parameters.

10 Neural Model Specifications.

In Figure 9 and Figure 10 we report the specifications of neural models benchmarked in this paper.

11 Paramterization of 2D Convolution

Listing 12 gives the seven-level nested loop that comprises a 2D convolution.

Figure 13 shows a design point for the CONV4 layer of ResNet. The architecture components are again the
same as in the 1D example, but since the memory footprint is significantly larger, the PE can no longer capture
all data reuse, so the Global Buffer must store large portions of the inputs and outputs.

12 Additional results

12.1 Software optimization

In Figure 14 we show more examples of the software optimization over multiple layers of the different architec-
tures. Our Bayesian optimization formulation consistently outperforms the baselines [3].

12.2 Ablations

In Figure 15 we compare different surrogate models and acquisition functions for Bayesian optimization of the
software mapping. We found Gaussian processes with LCB to consistently outperform other alternatives.

In Figure 16 we investigate the robustness of LCB for software optimization using different values of λ. We
found that λ = 0.1 tends to be too greedy, but that above λ = 0.5, LCB tends to be fairly robust.

9



Type Software Constraints

Loop blocking and 
degree of parallelism

Product of all blocking factors of R (S1) equals R of the target neural layer

Product of all blocking factors of S (S2) equals S of the target neural layer

Product of all blocking factors of P (S3) equals P of the target neural layer

Product of all blocking factors of Q (S4) equals Q of the target neural layer

Product of all blocking factors of C (S5) equals C of the target neural layer

Product of all blocking factors of K (S6) equals K of the target neural layer

Buffer capacity (local) Inputs/weights/outputs sizes (S1-S6) cannot exceed corresponding local sub-buffer capacity

Buffer capacity (global) Size of all types of data (S1-S6) does not exceed global buffer capacity

Parallelism
Product of blocking factors in global buffer X-axis (S1-S6) cannot exceed # PEs in X-axis

Product of blocking factors in global buffer (S1-S6) cannot exceed total # PEs

Figure 7: Software constraints.

number of independent trials 5 (HW), 10 (SW)

number of random data points 50 (HW), 150 (SW)

number of warmup data points 5 (HW), 30 (SW)

number of samples for EI 1000

lambda for LCB 1.0

Figure 8: Hyperparamters for BO.

Model Layers Specifications

ResNet

ResNet-K1

Filter size: 3×3
Output size: 56×56
# input channel: 64
# output channel: 64

Stride: 2

ResNet-K2

Filter size: 3×3
Output size: 28×28
# input channel: 128
# output channel: 128

Stride: 1

ResNet-K3

Filter size: 3×3
Output size: 14×14
# input channel: 256
# output channel: 256

Stride: 1

ResNet-K4

Filter size: 3×3
Output size: 7×7

# input channel: 512
# output channel: 512

Stride: 1

DQN

DQN-K1

Filter size: 8×8
Output size: 20×20
# input channel: 4

# output channel: 16
Stride: 4

DQN-K2

Filter size: 4×4
Output size: 9×9
# input channel: 16
# output channel: 32

Stride: 2

Figure 9: Specifications of ResNet (ResNet-18) [8] and DQN [18]

10



Model Layers Specifications

MLP
MLP-K1

din: 512
dout: 512

MLP-K2
din: 64

dout: 1024

Transformer

Transformer-K1

dmodel = 512
dv = 32
dk = 32
h = 16

Transformer-K2

dmodel = 512
dv = 64
dk = 64
h = 8

Transformer-K3

dmodel = 512
dv = 128
dk = 128
h = 4

Transformer-K4

dmodel = 512
dv = 512
dk = 512
h = 1

Figure 10: Specifications of MLP and Transformer [26]

Model Feature name Description

Hardware
mesh_x_ratio The ratio of PE array and global buffer along x-axis

mesh_y_ratio The ratio of PE array and global buffer along y-axis

Software

input_buffer_usage input data size / input (local) buffer size

weight_buffer_usage weight data size / input (local) buffer size

output_buffer_usage output data size / input (local) buffer size

global_buffer_usage all data size / global buffer size

parallelism_ratio_x used parallelism / available parallelism in the x-axis of global buffer

parallelism_ratio_y used parallelism / available parallelism in the y-axis of global buffer

Figure 11: Extra features used by the hardware and software BO optimizers.

f o r n i n [ 0 :N)
f o r k i n [ 0 :K)

f o r r i n [ 0 : R)
f o r s i n [ 0 : S )

f o r p i n [ 0 : P )
f o r q i n [ 0 :Q)

f o r c i n [ 0 : C)
o u t p u t s [ n ] [ k ] [ q ] [ p ] += w e i g h t s [ k ] [ c ] [ s ] [ r ] *

i n p u t s [ n ] [ c ] [ q+s ] [ p+ r ]

Figure 12: Computing a 2D convolution with a seven-level nested loop.

11



R=3

P=14

C=256

C=256
P+R-1=16

Weights Inputs Outputs

x9

PE

x3*3*256*256
x16*16*256
x14*14*256

Global Bu�er

for(q=0; q<14; q+=1)
 for(p=0; p<14; p+=1)
  for(s=0; s<3; s+=1)
   for(r=0; r<3; r+=1)
    for(c3=0; c3<2; c3+=1)
     out[k][q][p] += in[c0+c1+c2+c3][q+s][p+r] *
                      w[k][c0+c1+c2+c3][s][r]

for(k=0; k<256; k+=1)
 for(c1=0; p<128; p+=8)
  parallel_for(c2=0; c2<8; c2+=2)

for(c0=0; c0<256; c0+=128)

c0,c1,k
c2

DRAM

c0

2D Convolution

= temporal = spatial

x9

PE

x9

PE

x9

PE

x16*16*128
x14*14*256

S=3

Q=14

K=256

1

Q+S-1=16
K=256

Figure 13: An architecture computing the CONV4 layer of ResNet.

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(a) ResNet-K1

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d 

ED
P 

(re
cip

ro
ca

l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(b) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(c) ResNet-K3

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(d) ResNet-K4

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(e) DQN-K1

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(f) DQN-K2

0 200 400 600 800 1000
Number of trials

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(g) MLP-K1

0 200 400 600 800 1000
Number of trials

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(h) MLP-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(i) Transformer-K1

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(j) Transformer-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(k) Transformer-K3

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

BO (Ours)
TVM (XGBoost)
TVM (TreeGRU)
BO (Baseline)
Constrained Random Search

(l) Transformer-K4

Figure 14: Software mapping optimization on ResNet, DQN, MLP, and Transformer. The Y-axis
shows the reciprocal of energy-delay product (EDP) (normalized against the best EDP value). Higher
is better.

12



0 200 400 600 800 1000
Number of trials

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

GP+LCB
RF+LCB
GP+EI
RF+EI
Constrained Random Search

(a) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

GP+LCB
RF+LCB
GP+EI
RF+EI
Constrained Random Search

(b) ResNet-K3

0 200 400 600 800 1000
Number of trials

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

GP+LCB
RF+LCB
GP+EI
RF+EI
Constrained Random Search

(c) ResNet-K4

Figure 15: GP with different surrogate models and acquisition functions.

0 200 400 600 800 1000
Number of trials

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

lambda=0.1
lambda=0.5
lambda=1.0
lambda=1.5
lambda=2.0

(a) ResNet-K2

0 200 400 600 800 1000
Number of trials

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

lambda=0.1
lambda=0.5
lambda=1.0
lambda=1.5
lambda=2.0

(b) ResNet-K3

0 200 400 600 800 1000
Number of trials

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d 
ED

P 
(re

cip
ro

ca
l)

lambda=0.1
lambda=0.5
lambda=1.0
lambda=1.5
lambda=2.0

(c) ResNet-K4

Figure 16: LCB acquisition function with different lambda values.

13


	Introduction
	Related Work
	Hardware to Optimize DNNs
	Software to Optimize DNNs

	A Formal Representation of Software and Hardware
	Parameterizing the Design Space
	Constraints in the Design Space

	Bayesian Optimization for Hardware/Software Co-design
	Overview of Nested Hardware/Software Optimization
	BO for Optimizing Hardware Architectures
	BO for Optimizing Software Mappings

	Evaluation
	Methodology
	Software Mapping Optimization
	Hardware Configuration Optimization

	Conclusion
	Bayesian Optimization
	Overview
	Gaussian processes
	Acquisition functions
	Constraints

	Parameters and constraints
	Hyperparamters for BO
	Neural Model Specifications.
	Paramterization of 2D Convolution
	Additional results
	Software optimization
	Ablations


