
Copyright

by

Chirag Sakhuja

2024

1

The Dissertation Committee for Chirag Sakhuja
certifies that this is the approved version of the following dissertation:

Incorporating Prior Knowledge to Efficiently Design

Deep Learning Accelerators

Committee:

Calvin Lin, Supervisor

Derek Chiou

Mattan Erez

Angshuman Parashar

Atlas Wang

2

Incorporating Prior Knowledge to Efficiently Design

Deep Learning Accelerators

by

Chirag Sakhuja

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2024

3

Dedication

To my parents, Vivek and Monica, and my sisters, Shruti and Urvi.

4

Acknowledgments

The path to a PhD is mired with taxing twists and turns, and, more than

the research, it was the people around me that kept me going. I owe deep thanks

to many, but in this brief section I express my gratitude to those who had the

most direct impact on me and my work.

First, I thank my advisor, Calvin Lin. I am grateful to have found an

advisor whom I mesh so well with in terms of my research interests, work habits,

and personality. Calvin taught me technical skills that I will carry with me for

the rest of my life: how to find challenging and important problems to work on,

how to ask the right questions to break down a problem into tractable pieces,

how to use writing to gain clarity in my thinking, and how to articulate my

thoughts clearly and concisely. Calvin also showed me how to be a well-rounded

researcher. Throughout my PhD, he encouraged me to pursue my hobbies and to

take ample breaks to balance work and life. It is with Calvin’s patient guidance

that I am able to complete the work I present in this dissertation.

I also thank my committee members for their continued feedback and

guidance. Dr. Chiou is an inspiring researcher, teacher, and all-around person,

and I am grateful to have met him and to have worked with him. His thoughtful

advice shaped many of my decisions. Dr. Erez is a kind and extremely insightful

advisor, and his poignant questions made my work stronger. I am also grateful

for the impact he has had on the UT Austin ECE department, which I have called

home for 12 years. Dr. Parashar has deep technical understanding, and I am

thankful for his extensive feedback, which gave me a fresh perspective on my

work. Finally, Dr. Wang, having a different background than the rest of my

committee, patiently learned about my work and introduced me to new ideas, so

I am thankful for his wisdom.

Next I thank my friends and mentors:

5

• Dr. Yale Patt introduced me to the field of computer architecture, and I have

worked him in various capacities during my time at UT. I have learned so

much about teaching and research through him, and he has had the biggest

single-handed impact on my career.

• Minesh Patel is one of my closest friends and is a role model for who a

researcher should be. He is incredibly hard-working, passionate, inspiring,

and supportive, and I am grateful to have him as a friend.

• Alex Hsu has known me for 15 years, and I can always trust him to give

me guidance, whether it be for life or for research. Speaking of, Alex is

always willing and excited to dig deep into technical subjects, and we have

brainstormed many ideas together.

• Nikhil Dixit was one of the earliest friends I made, and it is uncanny how

many similarities we have: we both went to the same Sunday school, lived

in the same neighborhood, have (almost) the same birthday, double-majored

in ECE and CS, and ended up working full-time on the same team after we

graduated with our MS. It is always a treat to spend time with him, no

matter the purpose.

• Arjun Teh and I both started working full-time at the same time, and we both

quickly decided we wanted to pursue a PhD instead. Arjun was already a

close friend by that point, but since then he has been my go-to friend to talk

shop with about the PhD experience or to look to for support.

• Elaine Lui and I hardly knew each other when we were both at UT, but we

quickly became close friends the summer after she graduated to pursue her

PhD. We have since supported each other through countless ups and downs,

and her kind advice always puts a smile on my face.

6

• Jason Math quickly became a close friend—against all odds given our big

age gap—after I TAed him and later reconnected with him in the social

dance class. He is a pleasure to be around and to talk with, and he keeps

me young.

• Hansel Chiang and I connected through social dance and became very close

friends, spending many days together. When times were tough during my

PhD, she always lent a helping hand to make sure I was eating and sleeping

properly, and she was always ready to dance with me to cheer me up.

• My lab mates and collaborators: Quang Duong, Charles Hong, Carson

Molder, Molly O’Neal, and Zhan Shi. They have a broad range of expertises

that culminated into an exciting and rewarding research environment.

• The students I mentored: Kunaal Jha, Aparna Kumari, Caroline Li, Anoop

Rachakonda, Wendy Xie, Esther Yoon, and Jack Youstra. They not only have

great insight and passion but have made me a better researcher and teacher.

I am excited to see what they have in store.

• My oldest group of friends: Kevin Chen, Nikhil Joglekar, Andrew Lin,

Rohan Mutalik, Kevin Pham, Thejas Prasad, and Chris Roberts. They have

been with me through thick and thin, and we are still as close as ever. We

are all eagerly awaiting my graduation so that I can finally join in on their

extravagant plans.

• The group of friends I made when pursuing my MS: Cassidy Burden, Barak

Lidsky, Prakash Luu, and Ross McNulty. They are are a blast to be around

and can always lighten up the mood.

• My close dance friends: Isaac Akintitan, JC Mayo, Rianna Godula, and

Hannah Wang. They kept me going with a hobby that shaped my time

as a PhD student.

7

• Nick and Melissa Enge, who pour their heart into teaching the social dance

class and mentoring the course assistants. They have given me a lifelong

hobby that has brought me immeasurable joy.

Finally, I express my deepest thanks to my family. My parents always

gave me boundless opportunity to pursue my passions, and, despite never

fully understanding what a PhD student in computer architecture does, they

always lent me their gracious support and encouragement. My older sister, who

successfully juggles a thriving career in medicine with her many other passions

and goals, inspires me to give my all in everything I do. And my younger sister,

who boldly uprooted her life to live in the Czech Republic, reminds me to not

take life too seriously. I am who I am thanks to my family.

8

Abstract

Incorporating Prior Knowledge to Efficiently Design

Deep Learning Accelerators

Chirag Sakhuja, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Calvin Lin

Artificial intelligence (AI) has exploded in popularity over the past decade,

and its computational demand has seen commensurate increase. AI models are

getting larger, and AI applications are becoming more widespread. A common

strategy to mitigate the cost of this growth—which is estimated to consume 0.5%

of the world’s energy by 2027 [16]—is to develop domain-specific processors,

called deep learning accelerators (DLAs), that are more area-efficient and energy-

efficient at processing AI workloads than traditional processors, namely CPUs

and GPUs.

DLAs are efficient because they are specialized. Each DLA is developed

for specific applications that necessitate anything from high-power, high-

performance environments, such as datacenters, to energy-constrained, low-

performance environments, such as battery-operated sensors. Because AI

applications continue to evolve, new DLAs must constantly be in development,

which is costly and time-consuming.

It is advantageous to reduce the cost of DLA development so that

DLAs remain a relevant strategy to combat the growing computational demand

of AI. One approach is to automate the development of DLAs. However,

9

this is challenging because DLA development involves the careful selection of

many design parameters that have complex interactions among one another, so

automated tools, called design space exploration (DSE) tools, can struggle to

produce DLAs that are more efficient than hand-designed DLAs.

In this dissertation, I present techniques that leverage prior knowledge to

overcome this challenge. In particular, I show how (1) hand-crafted domain

information and (2) pre-collected data can efficiently guide DSE tools to

automatically find design parameters that result in efficient DLAs.

I implement these techniques in three open-source tools that reduce the

development effort of DLAs: Spotlight, Polaris, and Starlight. Spotlight is an

automated DSE tool that is intended for use in the early stage of the design

process, when designs are evaluated using an analytical model. For use later

in the design cycle, when designs are evaluated using timing simulators or RTL

simulators, I present Polaris, which is an automated DSE tool that is built around

the highly-accurate performance predictor, Starlight.

Although these tools embody the state-of-the-art in HW/SW co-design of

DLAs, the field is constantly evolving. I believe that the methodologies developed

for these tools will far outlast the tools themselves, and I hope that they inspire

future research that ultimately democratizes DLA development.

10

Table of Contents

List of Tables . 13
List of Figures . 14
Chapter 1: Introduction . 16
Chapter 2: Background . 22

2.1 Convolution Operation . 22
2.2 Deep Learning Accelerators . 24
2.3 Bayesian Optimization and Gaussian Processes 25
2.4 Selected Machine Learning Techniques 28

2.4.1 Transfer Learning . 28
2.4.2 Variational Autoencoders . 28
2.4.3 Deep Kernel Learning . 29

Chapter 3: Related Work . 31
3.1 Evaluation Frameworks . 31

3.1.1 Fast Evaluation . 31
3.1.2 Slow Evaluation . 33

3.2 DSE Tools . 34
3.2.1 Overview of Prior DSE Tools . 34
3.2.2 HW/SW Co-Design . 35

Chapter 4: Spotlight . 39
4.1 Co-Design Space . 42

4.1.1 Parameter Space . 42
4.1.2 Cardinal, Ordinal, and Categorical Parameters 44
4.1.3 Feature Space . 45

4.2 Domain-Aware BO . 48
4.2.1 Surrogate Model . 48
4.2.2 Acquisition Function . 49

4.3 Spotlight . 49
4.3.1 Layerwise Optimization . 50
4.3.2 Candidate Evaluation . 51

4.4 Evaluation . 51
4.4.1 Single-Model Co-Design . 53

11

4.4.2 Multi-Model Co-Design . 55
4.4.3 Discussion . 58
4.4.4 Feature Space Analysis . 59
4.4.5 Ablation Study . 61

4.5 Conclusion . 65
Chapter 5: Starlight . 66

5.1 Motivating Studies . 68
5.1.1 Spotlight’s Accuracy . 68
5.1.2 Transfer Learning . 69

5.2 Model Design . 70
5.2.1 Inputs and Outputs . 70
5.2.2 Dataset . 71
5.2.3 Starlight-Low . 72
5.2.4 Starlight . 74

5.3 Evaluation . 75
5.3.1 Accuracy . 76

5.4 Robustness . 78
5.4.1 Feature Importance . 80

5.5 Conclusion . 82
Chapter 6: Polaris . 83

6.1 Polaris . 84
6.1.1 Co-Design Space . 85
6.1.2 Iterative Hardware-Software Design 85
6.1.3 Hardware Optimizer . 88
6.1.4 Layerwise Software Optimizer 88

6.2 Evaluation . 89
6.2.1 HW/SW Co-Design . 91
6.2.2 Discussion . 96

6.3 Conclusion . 97
Chapter 7: Conclusions . 99
References . 100

12

List of Tables

3.1 Summary of prior work . 38

4.1 Ranges of design parameters that Spotlight explores 43
4.2 Features used as domain information by Spotlight 46

5.1 Input space of Starlight . 71

6.1 Ranges of design parameters that Polaris explores 85
6.2 Wall-clock time of Spotlight and Polaris 96

13

List of Figures

2.1 Operation performed by a convolutional layer in a deep learning
model . 23

2.2 Algorithm used to compute a convolutional layer 24
2.3 Architecture of a typical deep learning accelerator 25
2.4 Example of a Gaussian process and acquisition function 27
2.5 Architecture of an autoencoder . 29

4.1 Overview of Spotlight . 49
4.2 Key results of Spotlight . 54
4.3 Cloud-scale results of Spotlight . 56
4.4 Generalization of Spotlight . 57
4.5 Relative importance of each feature in daBOSW 60
4.6 Best result found over time by various optimization algorithms

compared to Spotlight . 62
4.7 Quality of various optimization algorithms compared to Spotlight . 64

5.1 Time/fidelity tradeoff of evaluation methods 67
5.2 Viability of transferring knowledge from analytical model samples

to RTL simulator samples . 69
5.3 Latent space with and without predictor network 72
5.4 Overview of Starlight . 73
5.5 Starlight training behavior . 77
5.6 Key results of Starlight and Starlight-Low 78
5.7 Robustness of transfer learning and DKL 79
5.8 Permutation importance for Starlight of each parameter in the

HW/SW co-design space . 80

6.1 Overview of Polaris . 86
6.2 EDP computed as product-of-sums but optimized as sum-of-products 87
6.3 Key results of Polaris . 92
6.4 Software DSE with Polaris . 93
6.5 Quality of designs explored by Polaris and Spotlight when

performing HW/SW co-design . 94

14

6.6 Quality of designs explored by Polaris and Spotlight when
performing software DSE . 95

15

Chapter 1: Introduction

Over the past decade, artificial intelligence (AI) has become a household

term. Chatbots [8] and smart devices [56] are just two of the many AI applications

that have garnered significant mainstream attention, and the impact of AI extends

well beyond the general public’s eye [71]. Decades of research, paired with

the exponential growth of computational power [95], have resulted in an AI

revolution that has seemingly left no industry untouched. Even this dissertation

is written with AI!1

At the heart of these AI applications is a technique called deep learning

(DL), which has only recently become computationally feasible despite having

origins in the 1960s [38]. At a high level, DL loosely mimics the behavior of the

human brain by tying together simple learning methods into a structure called a

DL model that is, quite literally, more powerful than the sum of its parts.

Although DL models approach or exceed human performance on some

tasks [23], they do so at a hefty computational cost: the development (i.e., training)

of a modern DL model can produce the same amount of CO2 emissions as 5 car

lifetimes [101], and the deployment of the model (i.e., inference) can consume

9× more energy over the model’s lifetime than the development stage [17].2

Moreover, with each new generation, DL models grow larger and consume more

resources [105].

Extensive effort has gone into mitigating the impact of this growth [17,

83, 94], and one strategy that has had widespread success [10, 11, 12, 43,

41, 63, 79, 90] and shows promise to combat future growth [117] is to build

1This is a joke.
2These numbers reflect the state-of-the-art on quantifying the cost of deep learning, but

accurately doing so has historically been challenging [70].

16

specialized processors, called deep learning accelerators (DLAs), that exhibit

higher area-efficiency and energy-efficiency than other processors—namely CPUs

and GPUs—when executing DL models [19].

DLAs, like CPUs and GPUs, must be designed to fit their specific

use case. For example, chatbots are built on massive DL models that

may require large DLAs in datacenters [41], and smart devices with simple

learning mechanisms may require small, area-constrained and power-constrained

DLAs [126]. Furthermore, DL use cases are constantly evolving—sometimes

rendering existing DLAs inefficient or obsolete [33, 108]—so DLAs must also

evolve to maintain their efficiency benefits [12, 42].

Consequently, we are constantly designing new DLAs for new use cases

and/or specifications. This is time-consuming and costly [43]. A solution

to reduce development effort is to introduce automation. Fortunately, DLAs

exhibit a property that can be exploited: despite differing in specific design

parameter values, such as memory sizes, many DLAs have similar high-level

architectures [47, 60, 82]. So it seems feasible for a tool to automatically determine

optimal design parameters.

To briefly summarize: To wrangle the increasing computational demand

for deep learning, it is advantageous to develop DLAs, and DLA development

effort can be reduced by introducing automation. To this end, we present in

this dissertation novel techniques to automatically design efficient DLAs. In

particular, we demonstrate how to incorporate prior knowledge—e.g., domain

expertise or offline datasets—to quickly find design parameters that optimize the

efficiency of DLAs.

The process of searching for optimal design parameters is called design

space exploration (DSE), and it can be applied to different levels of the deep

learning stack, which comprises (1) the DL model, (2) the software mapping of

that model onto a DLA, and (3) the DLA architecture. Our work focuses on

17

the latter two levels. This type of DSE, which simultaneously explores both the

DLA architecture design space and the software mapping design space, is called

hardware/software (HW/SW) co-design.

HW/SW co-design is challenging because the design space has complex

constraints, and the performance function—i.e., the function that maps a point in

the design space to a key metric such as delay or energy consumption—can vary

drastically between nearby points [48, 77, 87], making it difficult to predict. We

show, by designing three novel open-source tools, how prior knowledge can be

used to overcome these challenges.

First, we present Spotlight. Spotlight is a HW/SW co-design tool

that explores a vast co-design space to find both (1) optimized software

mappings for each layer of a DL model and (2) optimized DLA architecture

parameters. Candidate designs in Spotlight are evaluated with a low-fidelity

performance estimator called an analytical model that quickly provides first-

order approximations of performance. The key design goal behind Spotlight is

to reduce the number of evaluations—i.e, samples—necessary to find optimized

designs, and our key contribution in this work is a technique to inject hand-

crafted prior knowledge, in the form of domain information, to efficiently guide the

exploration to promising regions of the design space. Spotlight produces designs

that reduce delay by 153× over the best design produced by a state-of-the-art

HW/SW co-design tool, ConfuciuX [45], and reduce energy-delay product (EDP)

by 44× over a state-of-the-art hand-designed DLA, Eyeriss [11].

Second, we present Starlight. Starlight is a data-driven performance

estimator that predicts the EDP as measured by RTL simulation of processing a

DL model layer. We are motivated to design Starlight because we wish to extend

Spotlight to explore the design space of real hardware—as opposed to the design

space of an analytical representation of hardware—but we observe that a core

component of Spotlight—a proxy model that learns the shape of the performance

18

function—is too inaccurate to learn the complex behavior of real hardware. Our

key insight with Starlight, which is designed to replace the inaccurate proxy

model, is that prior knowledge from an analytical model can be transferred to

accurately predict the performance of real hardware. Consequently, Starlight is

able to predict with 99% accuracy the EDP of DLA execution as measured by RTL

simulation, which is a high-fidelity estimate for the behavior of real hardware.

Moreover, Starlight’s training data can be collected in under 16 hours on a single

AWS F1 instance.

Third, we present Polaris, which is the natural progression of this line of

work. Polaris is a HW/SW co-design tool that has similar inputs and outputs to

Spotlight, but it evaluates intermediate candidate designs with an RTL simulator.

The key design goal behind Polaris is to leverage Starlight to efficiently perform

co-design with hardware evaluation in the optimization loop. Polaris finds

designs that, on average, reduce the EDP by 2.7× over a state-of-the-art HW/SW

co-design tool, DOSA [35], that does not perform hardware evaluation in the

optimization loop.

The contributions of this dissertation are:

• We present two novel techniques that incorporate prior knowledge to

efficiently perform design space exploration (DSE) of the co-design space

comprising (1) deep learning accelerator (DLA) architectural parameters and

(2) the possible ways to map a layer of a deep learning model onto the DLA.

These techniques result in DSE tools that produce DLA designs and software

mappings that are more efficient than prior work.

– We develop a novel method to inject domain information into a DSE

tool to efficiently guide it to regions of the design space that a domain

expert expects to contain optimized design parameters. In addition

to resulting in better designs than prior work, our method is more

expressive than prior work.

19

– We are the first to transfer prior knowledge from a low-fidelity

DLA performance estimator—namely an analytical model—to a high-

fidelity DLA performance estimator—namely an RTL simulator—to

accurately predict the performance of real hardware. The resulting

performance estimator—a data-driven model called Starlight—predicts

with 99% accuracy the energy-delay product (EDP) of DLA execution

as measured by RTL simulation.

• We develop three open-source tools that reduce DLA development effort.

– We develop Spotlight, which is a DSE tool that leverages our first

method of incorporating prior knowledge. Spotlight automatically

produces DLA designs and software mappings that result in 153×
lower EDP than the best design produced by the ConfuciuX [45] DSE

tool and 44× lower EDP than the hand-designed Eyeriss [11] DLA

as measured by an analytical model. Due to its sample-efficiency,

Spotlight produces these designs in shorter runtime than competing

algorithms.

– We develop Starlight, which is a data-driven performance estimator

that leverages our second method of incorporating prior knowledge.

Starlight is trained on just 820 evaluations from an RTL simulator—

which can be collected in under 16 hours on a single AWS F1 instance—

and it predicts with 99% accuracy the EDP of DLA execution as

measured by RTL simulation. Furthermore, we demonstrate that our

transfer learning approach results in higher accuracy and more reliable

training than traditional data-driven approaches.

– We develop Polaris, which is the first DSE tool that evaluates

intermediate candidate designs in the optimization loop with an

RTL simulator. Polaris is built on Starlight, and it produces DLA

20

designs and software mappings that result in 2.7× lower EDP than

the best design produced by DOSA [35], which only evaluates the final

candidate found during optimization with an RTL simulator.

The remainder of this dissertation is structured as follows. Chapter 2

provides background information that is useful for understanding this

dissertation, and Chapter 3 contextualizes our contributions among the body of

existing literature. Chapters 4, 5, and 6 present Spotlight, Starlight, and Polaris,

respectively. Finally, in Chapter 7 we end with our closing remarks.

21

Chapter 2: Background

This chapter introduces an assortment of topics that provide the necessary

background to understand this dissertation. The first three topics are referenced

heavily by the chapters on Spotlight (Chapter 4) and Polaris (Chapter 6), and the

fourth topic covers techniques that are fundamental to Starlight (Chapter 5). The

following topics are introduced:

1. The convolution operation, which is a fundamental building block of deep

learning workloads.

2. The high-level architecture of deep learning accelerators.

3. Bayesian optimization, which is the optimization algorithm used throughout

this work, and Gaussian processes, which are a type of machine learning

method typically used by Bayesian optimization frameworks.

4. Three selected machine learning techniques: transfer learning, variational

autoencoders, and deep kernel learning.

2.1 Convolution Operation

Deep learning models are built using a variety of layer types, such as fully

connected, attention, and convolutional layers. The computationally dominant

layers can be represented, without loss of generality, in terms of a 3-D convolution

operation, so it is a common target for acceleration and is the focus of this

dissertation.

The 3-D convolution (∗) operates on an input tensor of size X ×Y × C and

a weight tensor of size R × S × C to produce an output tensor of size (X − R +

1) × (Y − S + 1) × 1. In a convolutional layer, the 3-D convolution operation is

22

X
C C

K NN

R

S

X-R+1

Y-S+1

K

Y

Inputs Weights Outputs

Figure 2.1: The operation performed by a convolutional layer in a deep learning
model.

repeated for each of N input tensors and K weight tensors to produce N × K

output tensors. The output tensors are reshaped into N tensors of size (X − R +

1)× (Y − S + 1)× K. Figure 2.1 depicts the operation of a convolutional layer.

At a high level, a convolutional layer is computed for each of the N input

tensors and K weight tensors as follows: (1) the weight tensor is overlaid onto

the top left of the input tensor, (2) the tensors are flattened into 1-D vectors

and the dot-product is computed to produce a scalar value that is stored as one

element of the output tensor, (3) the overlaid weight tensor is shifted by 1—first

in the X dimension and then the Y dimension—across the input tensor, and (4)

the process repeats until the weight tensor reaches the bottom right of the input

tensor. Figure 2.2 shows the software algorithm used to compute a convolutional

layer.

23

for n := 0 to N
 for k := 0 to K
 for c := 0 to C
 for y := 0 to Y-S+1
 for x := 0 to X-R+1
 for r := 0 to R
 for s := 0 to S
 Outputs[n][k][y][x] +=
 Inputs[n][c][y+s][x+r] * Weights[k][c][s][r]

Figure 2.2: The algorithm used to compute a convolutional layer.

2.2 Deep Learning Accelerators

A deep learning accelerator (DLA) is a specialized processor that is

designed to efficiently execute DL models. Specifically, DLAs are optimized to

process large tensor operations, such as matrix-multiplication and convolution,

because these operations comprise the dominant computational elements of a DL

model.

A DLA comprises two high-level components: (1) a compute core that

performs the tensor operation, and (2) a memory hierarchy that is designed

to exploit data reuse opportunities of which there are especially many in a

convolution operation [102].

Figure 2.3 shows, in more detail, the typical components of a DLA [102].

The compute core comprises a spatial array of processing elements (PEs) that

perform one or more multiply or multiply-accumulate operations. If necessary,

the outputs of the spatial array are accumulated before being stored in the

memory hierarchy. The specific organization of the memory hierarchy varies,

but for many edge-scale accelerators [10, 11, 61, 74, 79] there is (1) a software-

managed scratchpad and (2) an L2 cache that is connected to DRAM.

The convolution operation shown in Figure 2.2 is mapped onto a DLA in

the following three steps.

First, two of the seven dimensions (i.e., N, K, C, X, Y, R, S) are selected

24

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulator

Scratch-
pad

DRAM

L2

Figure 2.3: The architecture of a typical deep learning accelerator.

to be spatially unrolled—one vertically and one horizontally—across the spatial

array. In some cases, this selection is fixed in hardware [47]. If a dimension is too

large to be fully unrolled—as is typically the case—then the data is both spatially

and temporally multiplexed across the spatial array.

Second, the convolution operation is broken into pieces, called tiles, such

that each tile fits without overflow in a targeted level of the memory hierarchy.

For the DLA shown in Figure 2.3, which has two levels in the memory hierarchy,

two tile sizes are selected: a larger tile size for the L2 and a smaller tile size for the

scratchpad. The portion of the convolution that cannot fit in the L2 is temporally

multiplexed—i.e., streamed to and from DRAM.

Third, the order of the loops is determined. Loop ordering affects

the lifetime of data in the memory hierarchy and has implications on energy

consumption. In some cases, the loop order is fixed in hardware [47].

2.3 Bayesian Optimization and Gaussian Processes

Broadly speaking, optimization algorithms aim to find a value or set of

values that minimizes or maximizes a function. The task of finding a scalar

25

maximum can be written mathematically as follows.

x* = max
x∈X

f (x) (2.1)

We call f the performance function and X the design space. In this work,

we focus on the following subclasses of optimization algorithms.

• Single-objective optimization: When f : X → R, f has a single, scalar global

optimum. The task of finding x* is called single-objective optimization. On

the other hand, when f : X → Rn for n > 1, the task of finding the pareto-

optimal set is called multi-objective optimization.

• Black-box optimization: When ∇ f cannot be computed—as is often the case

with performance functions—an optimizer can only find x* by evaluating

f (x) directly. This is called black-box optimization. On the other hand,

white-box optimization moves candidates in the direction of ∇ f to find local

optima.

Bayesian optimization (BO) is a black-box optimization strategy that is

commonly employed when the performance function is expensive to evaluate [5].

A BO framework comprises (1) a surrogate model, which predicts the value of the

performance function and is cheap to evaluate, and (2) an acquisition function,

which is used to select the next sample that should be evaluated.

The surrogate model is a data-driven model that must maintain a reliable

measurement of uncertainty for its predictions—i.e., the output is a probability

distribution rather than a scalar prediction. The most common type of surrogate

model used in BO is a Gaussian process (GP) [28, 92]. At a high level, a GP

learns a probabilistic approximation of the performance function by maintaining

a Gaussian distribution for each point in the design space. Concretely, a GP

takes as input a design, x, and predicts a posterior distribution based on a prior

26

0 2 4 6 8 10

0

2

4 Performance Function
Sample
Mean
2 × Std. Dev.
Acq. Func.

Figure 2.4: A Gaussian process that is modeling a ground truth function that
has been sampled at 8 points. The acquisition function—in this case, Expected
Improvement—is applied over the Gaussian process and maximized to determine
the next sample to evaluate.

distribution over the space of functions comprised of a mean function, m(x), and

a covariance function, k(x, x′). If the covariance for every point in the design space

is 0, then the GP exactly matches the performance function.

Figure 2.4 shows a GP (the orange shaded region and the orange dashed

line) that is modeling a performance function (the solid line in blue) that has been

sampled 8 times. The shaded region represents the uncertainty of the surrogate

model at every input.

The acquisition function is a function that is applied over the surrogate

model to balance both exploration of uncertain regions and exploitation of the

regions that are likely to contain the optimum. A common acquisition function is

Expected Improvement (EI) [40], which calculates the change in expected value of

the surrogate model if a sample were to be evaluated. The acquisition function is

maximized to select the next sample that should be evaluated. Figure 2.4 shows

the EI acquisition function (the dot-dash line in green) applied to the GP. The

acquisition function is maximized around x = 7.75, which is a region of high

uncertainty. The other peak of the acquisition function is near x = 1.75, which is

the maximum of the performance function and is likely to be selected after the

point at x = 7.75.

27

Given a surrogate model and acquisition function, the steps that a Bayesian

optimizer takes are: (1) select a sample by maximizing the acquisition function,

(2) evaluate the sample on the performance function, (3) train the surrogate model

with the new evaluation, and (4) repeat the process until either the evaluations

converge or a fixed number of trials are complete.

2.4 Selected Machine Learning Techniques

This section presents three machine learning techniques that are

fundamental to Starlight, and it assumes the reader has some familiarity with

deep learning. If additional background is necessary, we refer the reader to free

online resources [78, 80].

2.4.1 Transfer Learning

Transfer learning is a machine learning training technique that re-uses a

model for a different task than it was originally trained for. There are many

forms of transfer learning [130], but we focus on a straightforward form called

hard weight sharing that directly transfers some trained weights from a source

model to an untrained target model.

2.4.2 Variational Autoencoders

An autoencoder [86] is a type of DL model that learns to compress with

minimal loss a high-dimensional input into a low-dimensional space called a

latent space. The architecture of an autoencoder is shown in Figure 2.5. On the

left side of the autoencoder, in what is called the encoder network, is a series of

fully-connected layers that decrease in size until they reach the target dimension

of the latent space. On the right side of the autoencoder, in what is called the

decoder network, is a series of fully-connected layers that reverses the encoder

network. The autoencoder is trained to minimize the loss between the input

28

In
pu

t F
ea

tu
re

s

Encoder Decoder

Latent
Space

Re
co

ns
tr

uc
te

d
Fe

at
ur

es

Figure 2.5: The architecture of an autoencoder.

of the encoder network and the output of the decoder network, which should

precisely reconstruct the original input. Consequently, the autoencoder learns to

encode inputs into unique representations in the low-dimensional latent space.

Autoencoders are susceptible to overfitting [3], and one solution is to inject

randomness into the latent representations. Specifically, the last layer of the

encoder network is modified to output a Gaussian distribution—as opposed to

a scalar value—that non-deterministically encodes an input into the latent space.

This type of autoencoder is called a variational autoencoder (VAE) [54]. VAEs are

widely accepted be more robust than standard autoencoders.

2.4.3 Deep Kernel Learning

DL models, such as variational autoencoders, excel at learning low-level

representations of complex, high-dimensional data [14]. They can be trained

using a wide variety of methods [62], but they struggle to provide reliable

uncertainty estimates [29], which are necessary for Bayesian optimization. On

the other hand, Gaussian processes provide reliable uncertainty estimates, but

they do not scale well to high dimensions [4]. Deep kernel learning (DKL) [114]

is an emerging technique that combines the best of both worlds. It attaches an

encoder network from a VAE to a Gaussian process (GP) to overcome limitations

29

of the individual techniques: The encoder network reduces the dimensionality

of the input space, and the GP provides a reliable measurement of uncertainty.

Recent studies show that DKL pairs well with both transfer learning and Bayesian

optimization [2, 26, 64, 115].

30

Chapter 3: Related Work

Deep learning accelerators (DLAs) have been a hot area of research

for the past several years, and thousands of papers have been published on

accelerator designs and their design process [19, 124]. In this chapter, we

present the prior work that is most relevant to this dissertation. Specifically, we

focus on the following two topics in the context of ASIC-based accelerators for

GEMM and convolution operations. First is evaluation frameworks, including

analytical models and timing simulators. Second is design space exploration

(DSE) tools, which automatically explore the values of design parameters to find

a configuration that optimizes a performance function.

3.1 Evaluation Frameworks

At every stage of the development process—from architectural exploration

to logic design to post-silicon—designers must ensure performance targets and

constraints are being met. So there are a variety of evaluation frameworks

that are designed for use at every stage of the development process. In this

section, we present these frameworks through the lens of design space exploration

(DSE) tools. As such, we categorize frameworks by their wall-clock time, which

profoundly impacts the capabilities of a DSE tool; fast frameworks, which

typically have lower fidelity, enable a DSE tool to explore many configurations,

whereas slow frameworks, which typically have higher fidelity, limit the total

number of configurations that a DSE tool can feasibly consider.

3.1.1 Fast Evaluation

The most common type of fast framework is an analytical model, which

approximates performance to the first-order by abstracting away fine-grained

31

details about execution behavior.

The two most flexible analytical models are MAESTRO [60] and

Timeloop [82], which can both model a broad range of DLA architectures and

workloads. MAESTRO provides an intuitive interface to specify the modeled

software and hardware, but MAESTRO is not as widely applicable as Timeloop,

which (1) provides finer control over design parameters, (2) integrates with other

well-established performance estimators [76, 119] to provide higher accuracy, and

(3) is regularly updated with new features [120].

There are many other analytical models in the literature, but they are

typically either simple variations of the roofline model [113] or have limited

flexibility [44]. Some examples include: (1) TENET [68], which introduces a

more expressive representation for tensor operations than Timeloop but does not

provide a means to specify a DLA architecture, (2) SCALE-Sim [89], which has

a coarse-grained mode that predicts performance using the geometric properties

of an abstract DL workload, and (3) the “Chip Predictor” in the AutoDNNChip

framework [123], which estimates the performance of a chain of black-box IP

blocks with known delays.

Although analytical models are invaluable tools for hardware design, they

have limitations. Notably, analytical models do not track data values or memory

addresses, so they are oblivious to the nuances of runtime execution [75]. A recent

type of fast performance model that can accurately predict the performance of

runtime execution is a data-driven model.1 Starlight (Chapter 5) is an example of

a data-driven model.

Kaufman et al. [51] design the first general-purpose data-driven model,

which is a graph neural network that estimates delay by consuming a tensor

computation graph and DLA-specific opcodes. Esmaeilzadeh et al. [22] use a

1An additional benefit of this approach is that data-driven models are differentiable, which
enables DSE tools to use white-box optimizers. We discuss this further in Section 3.2.

32

data-driven model to predict power, delay, and area, but their model does not

account for the specific workload being executed. Ferianc et al. [24] design a

Gaussian process that accepts as input (1) a convolutional layer and (2) DLA

parameters that can be accessed publicly from a datasheet, and it outputs delay

and energy consumption predictions. Other data-driven models are integrated

into DSE frameworks, so we discuss them in Section 3.2 alongside related work

in DSE.

3.1.2 Slow Evaluation

The two primary types of slow, pre-silicon evaluation frameworks

for ASIC-based accelerators are cycle-accurate timing simulators, which use

languages such as C++ or SystemC to model hardware, and RTL simulators,

which simulate the gate-level behavior of hardware.

STONNE [75] and SCALE-Sim [89] are both cycle-accurate simulators,

but neither models a full system nor integrates with popular machine learning

frontends, so they have limited usability. Bifrost [100] integrates STONNE with

the machine learning compiler framework TVM [9] to add support for standard

models. AccTLMSim [52] and SMAUG [121] are also cycle-accurate simulators,

and they additionally model a full system.

There are several open-source, parameterizable, ASIC-based DLA

implementations available [30, 69, 74, 79, 128] that can be simulated with any

off-the-shelf RTL simulator. One RTL simulator that is well-suited for research

with ASIC-based DLAs is FireSim [50], which alleviates three key challenges with

traditional hardware evaluation: (1) it accelerates RTL simulation using an FPGA,

so simulation is orders of magnitude faster than it would be on a CPU, (2) it

is built for use with FPGAs hosted by Amazon Web Services, so it does not

require on-site infrastructure, and (3) it supports a highly parameterizable DLA,

Gemmini [30].

33

3.2 DSE Tools

Because the DLA development process is a prime candidate for applying

automation, DSE tools that explore the design space of DLAs have gained

significant popularity in the past few years. In this section, we first present a

brief overview of the aspects of DLA development that DSE has been applied

to. We then describe in more detail a specific type of DSE known as HW/SW

co-design, which is the focus of this dissertation.

3.2.1 Overview of Prior DSE Tools

Every level of the deep learning stack—ranging from DL models to place-

and-route of DLAs—exposes a huge number of tunable design parameters, so

there is ample opportunity to perform DSE.

Much of the work in this area performs DSE for a single level of the

deep learning stack. The most notable work includes (1) [hardware-aware]

neural architecture search [25, 118, 131], which performs DSE of the DL model

architecture and is now standard practice for model design [112], and (2)

software optimization (a.k.a. map-space exploration) [9, 34, 37, 46, 82], which

performs DSE on the space of software optimizations that can be applied to the

convolutional layer loop structure shown in Figure 2.2.

Some prior work ties together single-level DSE tools to build a convenient

end-to-end framework that can be viewed as a subset of high-level synthesis [20,

55, 110, 111]. The input to these frameworks is a DL model in a high-level

language, and the output is a specialized DLA that is typically implemented on

an FPGA or CGRA. This direction of research is orthogonal to our work.

Other work performs DSE simultaneously across multiple levels of the

deep learning stack. The two primary classes of this kind of DSE, which is

referred to as co-design, are hardware/model co-design and hardware/software

(HW/SW) co-design. The former designs a DL model that balances model

34

accuracy and efficient execution [13, 65, 67, 84, 93, 106]. The latter, which is the

focus of this dissertation, is discussed in depth in the following section.

3.2.2 HW/SW Co-Design

HW/SW co-design is a type of DSE that finds both (1) an optimized DLA

configuration and (2) optimized software mappings per layer by exploring both

the DLA architecture design space and the software design space (a.k.a. the map-

space). It has been a popular area of research [103] because it can result in more

efficient execution than what single-level DSE tools can achieve [96].

We organize this section by the fidelity of the evaluation framework that

is employed by the HW/SW co-design tool: frameworks that do not consider the

runtime behavior of the system are considered to be low-fidelity, and frameworks

that do approximate the runtime behavior of the system are considered to be

high-fidelity. We categorize data-driven evaluation frameworks by the fidelity of

their training set.

3.2.2.1 Low-Fidelity Evaluation

The majority of HW/SW co-design tools use low-fidelity evaluation

frameworks because they are fast and easy-to-use, so the HW/SW co-design tool

can easily explore the co-design space by evaluating many configurations. The

most common low-fidelity evaluation framework is an analytical model, which

mathematically models the approximate behavior of a DLA.

Early work tackles the daunting problem of HW/SW co-design by

exploring a small co-design space of parameters and evaluating designs on an

analytical model. dMazeRunner [15] is one of the earliest HW/SW co-design

tools, and it prunes the co-design space enough so that the co-design space can

be explored randomly. ZigZag [73] poses a large co-design space, but it prunes the

co-design space so much that the co-design space can be explored exhaustively.

35

A larger co-design space is more challenging to explore, so prior work

employs sophisticated black-box optimization algorithms. MAGNet [109] and

HASCO [122] both employ off-the-shelf Bayesian optimization (BO) frameworks,

but they still use heuristics to prune the co-design space. FAST [129] uses off-the-

shelf BO to explore an unconstrained co-design space. Hypermapper [77] and

Spotlight [87] (Chapter 4) are custom BO frameworks that consume hand-crafted

domain information to guide the optimizer. Spotlight supports a significantly

more expressive form of domain information. Other work employs reinforcement

learning [45, 122] or genetic algorithm [45, 49], and Vaidya et al. [107] directly

solve—i.e., they do not use an optimizer—a re-formulation of the problem.

White-box optimization algorithms have also increased in popularity, but

they require a differentiable evaluation framework, which is typically achieved

using a data-driven surrogate model. VAESA [36], which is one of the earliest

white-box HW/SW co-design tools, performs stochastic gradient (SGD) descent

on a variational autoencoder that predicts energy and delay. AIrchitect [88] is a

recommendation system (RS) that, given a target workload, automatically predicts

optimized design parameters. ArchGym [57], although not a HW/SW co-design

tool itself, is a modular framework that performs data collection that can be used

by white-box optimizers.

3.2.2.2 High-Fidelity Evaluation

Although low-fidelity evaluation frameworks are fast and easy-to-use, they

can be highly inaccurate [75], so recent HW/SW co-design tools incorporate high-

fidelity evaluation frameworks. Standard high-fidelity evaluation frameworks,

such as timing simulators and RTL simulation, are orders of magnitude slower

than analytical models, so prior work optimizes data-driven surrogate models—

which can be queried at least as quickly as an analytical model—that are trained

with high-fidelity evaluations to act as a proxy for the slow framework. Polaris,

36

which we present in Chapter 6, is the first HW/SW co-design tool that performs

high-fidelity evaluation in the optimization loop.

Interstellar [125] is one of the earliest HW/SW co-design tools that

incorporates high-fidelity evaluation. It only explores the design space of

spatially unrolled dimension, which can be explored exhaustively, and it evaluates

designs on an FPGA. Hong et al. [35] build a data-driven model that bridges

the accuracy gap between analytical models and RTL simulation, and they

incorporate the model into a HW/SW co-design tool called DOSA that uses

the Adam optimizer [53]. Kumar et al. [59] collect an offline dataset of cycle-

accurate simulations, use the data to build a model that can predict performance

and infeasibilty of a design, and evaluate a multitude of white-box and black-

box optimization algorithms to find candidate designs. Esmaeilizadeh et al. [21]

create a comprehensive framework for end-to-end DSE that includes a data-driven

model to predict post-place-and-route performance, power, and area. Apollo [127]

uses a data-driven model that is trained on cycle-accurate simulations, and

it employs transfer learning to reduce the amount of necessary training data.

Starlight (Chapter 5) employs a different type of transfer learning to reduce the

necessary training data, and it is integrated into the HW/SW co-design tool

Polaris (Chapter 6).

3.2.2.3 Summary

Table 3.1 summarizes the prior work in HW/SW co-design of DLAs. It

specifies the type of optimization algorithm used, the evaluation framework,

and the evaluation time—i.e., whether candidate designs are evaluated in the

optimization loop (in-the-loop) or at the end of the optimization loop (after-the-

loop).

37

Work Optimizer Evaluation Framework Evaluation Time
ZigZag [73] Exhaustive AM -

dMazeRunner [15] Random AM In-the-loop
DiGAMMA [49] GA AM In-the-loop
ConfuciuX [45] GA + RL AM In-the-loop
AIRchitect [88] RS Data-Driven (AM) After-the-loop

VAESA [36] SGD Data-Driven (AM) After-the-loop
MAGNet [109] BO AM In-the-loop

FAST [129] BO AM In-the-loop
HASCO [122] BO + RL AM In-the-loop

HyperMapper [77] Custom BO AM In-the-loop
Spotlight (Ours) Custom BO AM In-the-loop
Interstellar[125] Exhaustive FPGA -

DOSA [35] Adam Data-Driven (RTL) After-the-loop
PRIME [59] Adam Data-Driven (TS) After-the-loop
Apollo [127] BO Data-Driven (TS) After-the-loop

Polaris (Ours) Custom BO Data-Driven (RTL) In-the-loop

Table 3.1: Summary of prior work in hardware/software co-design of deep
learning accelerators. Optimizer abbreviations: GA = Genetic Algorithm, RL
= Reinforcement Learning, RS = Recommendation System, SGD = Stochastic
Gradient Descent, BO = Bayesian Optimization. Evaluation framework
abbreviations: AM = Analytical Model, TS = Timing Simulator, RTL = RTL
Simulator.

38

Chapter 4: Spotlight

The goal of a HW/SW co-design tool is to find an optimal design by

exploring the co-design space comprising the hardware design space, which

comprises architectural design parameters such as buffer sizes and processing

element (PE) arrangement, and the software design space, which comprises loop

optimization choices such as loop permutations and tiling factors.

Unfortunately, the co-design space exhibits unique characteristics that

make it challenging to automatically explore: (1) the co-design space is massive,

e.g. a single layer of the ResNet-50 [33] DL model on a spatial array of PEs

has O(1018) configurations, (2) the co-design space is complex, as hardware

and software parameters have complex interactions that render large and

unpredictable parts of the co-design space infeasible or invalid, and (3) some

parameters are ordinal (sortable but discontinuous values) or categorical (a set of

arbitrary options), so performance and energy can vary wildly and unpredictably

with minor changes to their values—i.e., there are performance cliffs.

To explore this vast co-design space, prior work employs intelligent

optimization algorithms such as Bayesian optimization [21, 36, 77, 109, 122, 127,

129] or reinforcement learning [45, 122]. Unfortunately, these techniques largely

rely on off-the-shelf algorithms which struggle with the complex portions of the

design space, particularly with ordinal and categorical parameters [36, 77].

In this chapter1 we introduce a novel customized Bayesian optimization

framework, daBO (domain-aware BO), that overcomes the challenges of exploring

the HW/SW co-design space. Our key insight is that the optimization algorithm,

1This contents of this chapter are previously published: [87] C. Sakhuja, Z. Shi, and C.
Lin, “Leveraging Domain Information for the Efficient Automated Design of Deep Learning
Accelerators,” in High- Performance Computer Architecture (HPCA), Feb. 2023. My contribution
comprises the Spotlight system and key aspects of domain-aware BO (daBO).

39

which conventionally evaluates a large number of samples to learn the shape of

the performance function—i.e., the function that maps a point in the co-design

space to key metrics such as delay or energy consumption—can be made more

efficient by bootstrapping it with prior knowledge. For example, a domain expert

knows that the degree of parallelism, which is derived from the spatially unrolled

dimension, the shape of the DL model, and the arrangement of processing

elements, is a more accurate predictor of delay than any of the constituent parts

alone. In designing daBO, we introduce a flexible method of providing hand-

crafted, high-level correlations—i.e. domain information—to the optimization

algorithm. As a result, daBO is sample-efficient—i.e., it converges to a solution

with fewer evaluations than prior approaches.

Because daBO is sample-efficient, it can be applied to massive HW/SW co-

design spaces, enabling it to find—in the same amount of time—designs that

are superior to those identified by other optimization techniques. Because it

can leverage domain information, daBO can learn complex interactions between

parameters. And because daBO can handle ordinal and categorical values, it can

consider important design parameters that other techniques struggle with.

We use daBO as the basis for a new automated HW/SW co-design tool

called Spotlight, which takes as input a set of DL models and a hardware budget.

Spotlight then evaluates configurations using the MAESTRO [60] analytical

model, and Spotlight produces as output (1) optimized architectural parameters

for a programmable DLA and (2) optimized software mappings for each layer of

the DL model.

We make the following contributions:

• We present daBO (domain-aware BO), a novel Bayesian optimization

framework that effectively deals with the ordinal and categorical design

parameters that lead to discontinuities in the design space. In particular,

40

daBO leverages domain information to efficiently learn correlations among

categorical design parameters.

• We illustrate the benefits of daBO by presenting Spotlight, an open-source2

automated HW/SW co-design tool that is built on daBO. We show that

for the ResNet-50 DL model, Spotlight produces DLA designs with 44×
lower energy-delay product (EDP) than an Eyeriss-like hand-designed DLA

and 135× lower delay than a design created by ConfuciuX, a state-of-the-art

HW/SW co-design tool. For the Transformer DL model, Spotlight achieves

902× lower EDP than an NVDLA-like hand-designed DLA and 52× lower

delay than a cloud-scale Eyeriss-like DLA.

• We demonstrate that automated HW/SW co-design is critical for designing

efficient DLAs. A significant part of Spotlight’s benefit comes from the

co-design of loop tile sizes with scratchpad sizes—a strategy that is made

possible by daBO, which can efficiently explore the design space of tile sizes

through the use of domain information.

• We empirically demonstrate that Spotlight exhibits several desirable

properties.

– It is extremely sample efficient. We show that it can effectively explore

a co-design space of O(1018) design points using just 100 hardware

samples and 100 software samples per layer.

– It can find designs that prior work completely ignores. Specifically,

Spotlight considers both loop permutations and loop tiling factors for

each dimension, while prior work in automated HW/SW co-design

prunes this part of the co-design space.

2https://github.com/chiragsakhuja/spotlight

41

https://github.com/chiragsakhuja/spotlight

– It is highly flexible and can be used in diverse design settings that

include both edge-scale and cloud-scale designs: (1) It supports

single-model co-design of DLA architectural parameters and software

mappings, which is useful for FPGA deployment, and (2) it produces

programmable DLAs that are able to efficiently execute DL models

that they were not co-designed for—a property that is useful for ASIC

deployment.

The remainder of this chapter is organized as follows. In Section 4.1 we

discuss the specific HW/SW co-design space used in this work and introduce our

concept of a feature space. Section 4.2 introduces daBO, and Section 4.3 describes

Spotlight, which is evaluated in Section 4.4 before we conclude in Section 4.5.

4.1 Co-Design Space

The co-design space used in this work is the Cartesian product of the

hardware and software design space of DLAs, as described in Chapter 2.

Specifically, we select a set of parameters that, as prior work [48, 47, 60, 39, 82]

has shown, captures a wide variety of DLAs and software optimizations. This

co-design space is massive: O(1018) for a single layer of ResNet-50 running on a

parameterizable DLA.

First, we present the precise values in the co-design space that Spotlight

explores, which are categorized as cardinal, ordinal, or categorical. Then, we

present the notion of a feature space, which is our technique for reducing the

complexity of the co-design space by using domain information.

4.1.1 Parameter Space

The parameter space that Spotlight explores comprises (1) the architectural

parameters for DLAs and (2) the full set of loop transformations that can

42

Parameter Range
SIMD Lanes 2 to 16
Bandwidth 64 to 256

PEs 128 to 300

(a) Cardinal parameters
Parameter Range Stride

Scratchpad Size 64 to 256 KB 8
Register File Size 64 to 256 KB 8
PE Aspect Ratio Divisors of PE Count N/A
Tiling Factors† Divisors of layer shape N/A

(b) Ordinal parameters
Parameter Values

Loop Order† Permutations of loops
Unroll Dimension† N, K, C, R, S, X, Y

(c) Categorical parameters
†Independent values per level of the memory hierarchy.

Table 4.1: The ranges of design parameters that Spotlight explores.

be applied to the 7-level loop to compute a convolutional layer, as shown in

Section 2.1.

The hardware design space comprises the following prominent

characteristics of DLAs: processing element (PE) count and arrangement (in a

2-D spatial array); the number of SIMD lanes in each PE; the size of the register

files (RFs) that are in each PE; the size of a single global scratchpad; and the

bandwidth of the simple interconnect, which supports unicast and multicast. To

compare fairly against prior work, we use a fixed 8-bit precision. Table 4.1 shows

the ranges of hardware design parameters that Spotlight explores when designing

an edge-scale DLA.

The software design space, which is independent for each layer of the

DL model, consists of all loop transformations that can be applied to the 7-level

loop of a convolution. We consider three loop transformations: loop tiling, loop

43

reordering, and spatial unrolling.

Loop tiling [116] is a common loop optimization that improves data

locality by splitting large loops into smaller loops that fit into on-chip caches

or scratchpads. Each of the 7 loops in the convolution computation can be

independently tiled. Naively, for a DLA with two levels of memory hierarchy,

there are (N × K × C × R × S × X × Y)2 options for loop tiling, but many of

these options are invalid or require either insertion of edge cases in the loops or

padding in the memory footprint. Our design space only considers loop tiling

options that perfectly divide the size of the layer.

After loop tiling is applied, the resulting 14 loops can be reordered in any

of (7!)2 permutations, and each permutation is a viable option.

Finally, one loop out of each level of loop tiling can be spatially unrolled

along each of the vertical and horizontal dimensions of the 2-D spatial array.

Spotlight considers all 72 options for spatial unrolling.

4.1.2 Cardinal, Ordinal, and Categorical Parameters

Cardinal parameters, which take on integral values within a specified

range, are straightforward for optimization algorithms to explore because they

tend to exhibit appreciable trends. For example, as on-chip bandwidth is

increased, energy consumption and area increase, and delay decreases. Ordinal

parameters, which take on ordered values, are more complex to explore—

especially if they have inconsistent spacing—but they can still exhibit appreciable

trends. Categorical parameters, however, are problematic for optimization

algorithms because they represent arbitrary values that have no correlation among

them, so changes in their value have unpredictable implications. Table 4.1

organizes by type each parameter in Spotlight’s design space.

44

4.1.3 Feature Space

The HW/SW co-design space of DLAs exhibits three unique challenges:

(1) the co-design space is vast, (2) the co-design space is complex, with

interactions among parameters rendering large portions of the space invalid, and

(3) changes to the numerous ordinal and categorical parameters can result in

erratic changes in behavior of the resulting design. Our technique of injecting

domain information into the optimization algorithm overcomes these challenges.

4.1.3.1 Overview

To understand how domain information can improve an optimization

algorithm’s learning process, consider an example: It is well known that end-

to-end delay is directly proportional to PE count and utilization, and given

enough sample points, an optimization algorithm can learn this correlation on

its own. However, it is sample-efficient for an expert to explicitly highlight this

correlation. Thus, domain information can be used (1) to guide the exploration

toward profitable regions and away from invalid regions of the co-design space,

and (2) to provide information on the behavior of parameters so that changes to

these parameters are more predictable.

Typically, an optimization algorithm explores the parameter space directly,

but we introduce the notion of a feature space, which comprises features, which are

defined as an arbitrary transformation over the parameter space.

Concretely, let X be the set of HW/SW co-design parameters. The

performance function, f , maps a design in X to its performance. The feature

space is defined as any transformation T : X → X′, where X′ is the feature space

and comprises individual features x′i : X → R. The transformed performance

function, f ′, which is what is learned by Spotlight, maps the performance of a

design, x ∈ X, as follows: f ′(T(x)).

It is easier for an optimization algorithm to find correlations in f ′ than

45

Feature Calculation

Raw Cardinal Parameters SIMD Lanes, On-Chip Bandwidth,
Total # of PEs, Width of PE Array

Total Amount of On-Chip SRAM Register File Size + Scratchpad Size

Parallelism Available in Kernel R0 × S0

Degree of Spatial Unrolling
Outer Loop Unrolled Tile Size×

Inner Loop Unroll Tile Size

PE Utilization

DRAM Tile Size
Outer Loop Unrolled Tile Size×Height of PE Array×

Outer Loop Unrolled Tile Size
Inner Loop Unrolled Tile Size×Width of PE Array

Number of Loop Iterations to Completion ⌈Outer Loop Unrolled Tile Size
Height of PE Array ⌉ × ⌈ Inner Loop Unrolled Tile Size

Width of PE Array ⌉

Approximate Transfers from DRAM
(X0/X2)× (Y0/Y2)×

(Width of PE array + Height of PE array)

Size of Commonly Unrolled Dimensions 2 × X0 + 3 × Y0 + 5 × K0 + 7 × K1 + 11 × K2

Table 4.2: Features used as domain information by Spotlight.

f . For example, it is unreasonable for an optimization algorithm to learn much

useful information about delay from just the spatially unrolled dimension, which

is a categorical parameter that takes on 72 unrelated values. By contrast, it is much

more apparent that there is an inverse relationship between delay and degree-of-

parallelism, which is a feature derived from the spatially unrolled dimension, the

tiling factors, and the PE arrangement.

4.1.3.2 Feature Selection

The quality of the features determines the quality of the exploration, so

thorough feature selection is critical. The selection of relevant and meaningful

features is domain-specific, so we propose four general guidelines. First, ensure

that categorical parameters are incorporated into one or more features so that

it is easier for the optimization algorithm to find correlations among them.

Second, encode domain information, i.e. well-known complex interactions among

hardware and software parameters, as features. Examples of domain information

46

are: the cost of data transfer among parts of the memory hierarchy and knowledge

about the infeasible regions of the co-design space. Third, design features that

have linear trends so that the Bayesian optimization framework can quickly

learn the simple correlations. Fourth, verify the usefulness of each feature by

computing permutation importance [1].

We use these guidelines to brainstorm an initial set of 15 intuitive features

including buffer utilization, reuse volume, PE perimeter, and those in Table 4.2.

To ensure that the features are of high quality, we measure the correlation

between each feature and the performance metrics by (1) computing each feature’s

value for millions of random HW/SW samples, and (2) visualizing a graph of

performance vs individual feature values. We discard any features that do not

exhibit a strong correlation. Furthermore, to ensure that removal of a feature does

not affect exploration quality, we evaluate our automated HW/SW co-design tool,

Spotlight, both with and without these weakly-correlated or uncorrelated features

(see Section 4.3).

Table 4.2 shows the final results of our feature selection process, including

the equations used to compute each feature. We validate each of these features

by ensuring that the correlations learned by the surrogate model are the same as

those that we observe with our offline samples. The first features are simply raw

cardinal parameters, which our optimization algorithm is already able to correlate

well with performance metrics. Next, the total amount of on-chip SRAM is

directly correlated with power consumption. The next three features—parallelism

available in kernel, degree of parallelism in the spatially unrolled dimension, and

PE utilization—measure available parallelism, which is a property of both the

hardware and software and is strongly correlated with delay. Next, some designs

can produce many edge cases that lead to a large tail latency, so we incorporate

as features an approximation for the number of loop iterations for a layer to

completely execute and the number of transfers of the input and kernel matrices

from DRAM. Finally, we incorporate commonly unrolled spatial dimensions that

47

are correlated with delay. We observe that each independent parameter—X0, Y0,

K0, etc.—has a weak, but notable, correlation with delay because the parameters

generally take on fewer than 32 unique values, making it difficult to disambiguate

them. For this feature, we spread out the number of unique values by using the

prime numbers as the “basis vectors” to compute a linear combination of these

parameters.

4.2 Domain-Aware BO

Our novel Bayesian optimization framework utilizes the notion of a feature

space to efficiently explore the co-design space.

As an optimizer, Bayesian optimization consists of two major components:

(1) a surrogate model that predicts a Bayesian posterior probability distribution

over the values of a cost function, and (2) an acquisition function that leverages

the posterior distribution to suggest a design point to evaluate.

4.2.1 Surrogate Model

Conventionally, the surrogate model predicts the cost function by learning

the characteristics of the parameter space. With daBO, the surrogate model

is trained on features instead of parameters. Candidate designs are randomly

generated in the parameter space, and daBO transforms them into the feature

space before evaluating them on the surrogate model.

As is common practice, daBO uses a Gaussian process (GP) as the surrogate

model. Typically, a Matérn [72] or Radial Basis Function (RBF) [7] kernel

is employed because these kernels can approximate a wide variety of cost

functions [31], but both kernels have complexity O(N3), and we find that, in the

context of Spotlight, they overfit to the evaluated samples. Instead, daBO employs

a simple linear kernel, which has O(N) complexity, that takes far fewer samples

48

Hardware Optimizer

For i samples

Software Optimizer (Per Layer)

daBOHW

daBOSW
For j samples

Analytical
Model

HW Config

Minimized SW Config

HW+SW Config

Perf Metrics

Hardware Budget

Optimized Microarchitectural
Params and Software Schedules

Model 0, Layer 0 Model m, Layer n...

Optimization Algorithm

Cost Function

Figure 4.1: Spotlight takes as input a hardware budget and a DL model
and performs a nested optimization using our novel Bayesian optimization
framework, daBO, to produce optimized microarchitectural parameters and
software mappings.

to accurately model the trends of the cost function. Furthermore, a linear kernel

fits well with our feature selection methodology.

4.2.2 Acquisition Function

The acquisition function selects the next design to evaluate on the cost

function. A common choice of acquisition function is Expected Improvement [40],

but we find that, empirically, lower confidence bound [99] converges more quickly

to a minimum.

4.3 Spotlight

Spotlight is a design space exploration tool that employs multiple instances

of daBO to perform automated HW/SW co-design. At a high level, Spotlight

49

accepts as input a hardware budget and a set of layers from one or more

DL models; for each input layer, Spotlight produces as output architectural

parameters for an optimized DLA, along with optimized software mappings.

Spotlight uses the MAESTRO [60] analytical model to evaluate designs. Spotlight

does not perform code generation or hardware synthesis. Figure 4.1 provides an

overview of Spotlight.

4.3.1 Layerwise Optimization

It is challenging to optimize multiple layers of a model simultaneously, so

Spotlight iteratively optimizes the hardware design and software mappings using

a layerwise approach. Independent instances of daBO are used to explore the

hardware and software design spaces, so we denote the instances as daBOHW and

daBOSW.

We use xh and xs to denote the set of hardware and software parameters

in the parameter space. In Spotlight’s layerwise approach, the hardware

optimization is first performed by daBOHW with the objective being to minimize

f ′(T(xh)), which can be the energy-delay product (EDP) or delay of executing

the DL model on the hardware design. Given the hardware design, Spotlight

optimizes the software mapping by applying daBOSW to each layer independently,

with the objective being to minimize f ′(T(xs | xh, layerj)), which is defined as the

EDP or delay of executing the layer j on the hardware design. The software

optimization produces the best software mapping for each layer on the hardware

design. The layerwise energies and delays are then added together to compute

aggregate EDP or delay, which is fed back to daBOHW to generate the next

hardware design. This concludes one iteration of optimization. The iterative

optimization between hardware and software repeats for a user-defined number

of trials.

50

4.3.2 Candidate Evaluation

To evaluate the cost of each design, we use MAESTRO [60] to report delay,

energy, throughput, power, and area. MAESTRO has been validated against RTL

simulation, and our hardware and software design spaces naturally translate into

MAESTRO’s data-centric loop representation. MAESTRO models primitives, such

as interconnects and convolutional layers, that are building blocks for DLAs and

DL models.

Spotlight performs single-objective optimization to minimize delay or EDP,

which is a common metric for comparing DLAs [46]. From the pareto-optimal

frontier, Spotlight selects the configuration that is closest to the inputted area and

power budgets without exceeding them.

4.4 Evaluation

We evaluate Spotlight in a variety of settings and against a variety of

baselines. Unless otherwise specified, we evaluate Spotlight with 100 hardware

samples and, for each hardware design and each layer, 100 software samples.

DL Models We co-design separate DLAs with each of five DL models. Four

models—VGG16 [97], ResNet-50 [33], MobileNetV2 [91], and MnasNet [104]—are

popular for image processing and span nearly a decade of progress, including one

model, MnasNet, that is automatically generated by neural architecture search

(NAS). The fifth model is a single Transformer [108], which is a building block for

the state-of-the-art natural language processing model, GPT-3 [8].

Hand-Designed DLAs We compare Spotlight’s optimized DLA designs against

three hand-designed DLAs: NVDLA-like [79], Eyeriss-like [11], and MAERI-

51

like [61]3. NVDLA and Eyeriss are popular edge-scale DLAs that have been

fabricated. Both DLAs suffer from rigid dataflows that cannot always run modern

DL models efficiently [12, 47], while MAERI, which is a more recent edge-scale

DLA that has not been fabricated, is designed to be highly flexible. For fairness,

we evaluate both Spotlight-generated DLAs and the hand-designed DLAs with

our layerwise software optimizer, daBOSW and we scale all DLAs so that they fit

in the same area.

HW/SW Co-Design Tools Where possible, we compare Spotlight against

two state-of-the-art HW/SW co-design tools that also use the MAESTRO [60]

ecosystem: ConfuciuX [45] and HASCO [122]. ConfuciuX optimizes with a

combination of reinforcement learning and genetic algorithms, and HASCO

optimizes with a combination of Bayesian optimization and reinforcement

learning. Both tools explore limited software mappings: ConfuciuX selects one

of Eyeriss-like, NVDLA-like, or ShiDianNao-like, and HASCO does not explore

software mappings at all. We evaluate ConfuciuX and HASCO with their out-of-

the-box configurations. We do not show comparisons against Hypermapper [77],

which is a Bayesian optimization framework that consumes a simpler form of

domain information, because most runs do not terminate within four days of

runtime (far longer than the scale of our evaluated results), and those that do

produce designs on par with Eyeriss-like.

DLA Size We generally use Spotlight to generate edge-scale DLAs with the

parameters specified in Table 4.1. Additionally, we optimize for a cloud-scale

setting and compare against scaled-up hand-designed DLAs. To explore cloud-

scale DLAs, the only change to Spotlight is the range of the parameter values that

3We refer to the hand-designed DLAs as Eyeriss-like, NVDLA-like, and ShiDianNao-like
because the MAESTRO model can only approximate their behavior.

52

Spotlight explores—Spotlight works out-of-the-box without any other change to

configuration.

Performance Metrics Spotlight can minimize either delay or energy-delay

product (EDP) under area and power constraints.

Design Scenarios We present results for two different scenarios, which are

described in more detail in their respective sections: single-model co-design

(Section 4.4.1) and multi-model co-design (Section 4.4.2).

We conclude the evaluation with a discussion of Spotlight’s benefits

(Section 4.4.3), a deeper dive into daBO’s behavior (Section 4.4.4), and an ablation

study (Section 4.4.5).

4.4.1 Single-Model Co-Design

One use case for Spotlight is to co-design a DLA with a full DL model. The

generated DLA can be deployed on an FPGA, which can be reconfigured for each

new model, or it can be deployed as a highly specialized ASIC, for example, in a

low-power IoT device with a long lifetime and static workload.

The key takeaway from this first set of experiments: When co-designing

with a single DL model, Spotlight produces designs that achieve significantly

lower delay than hand-designed DLAs and those produced by other co-design

tools.

Figure 4.2 shows the results when Spotlight co-designs edge-scale DLAs.

Each bar represents the median delay of 10 independent trials, and the error bars

indicate min/max of the trials. The missing data is due to limitations of HASCO

and ConfuciuX, which cannot run all the selected DL models. This figure focuses

on delay because HASCO and ConfuciuX cannot minimize energy-delay product

(EDP). Notably, the trends when minimizing EDP are identical.

53

105

106

107

108

109

Cy
cl

es
 (L

og
)

74× 20× 17× 10× 1×
VGG16

105

106

107

108

109
135× 24× 12× 12× 9× 1×

ResNet-50

104

106

108
83× 19× 11× 10× 7× 1×

MobileNetV2

104

106

108

Cy
cl

es
 (L

og
)

224× 12× 11× 9× 1×
MnasNet

105

107

109
150× 87× 16× 1×

Transformer
ConfuciuX
HASCO
Eyeriss-Like
NVDLA-Like
MAERI-Like
Spotlight

Figure 4.2: Comparison of Spotlight against edge-scale hand-designed DLAs and
those designed by state-of-the-art HW/SW co-design tools [45, 122]. The missing
data is due to limitations of HASCO—which does not accept VGG16, MnasNet,
or Transformer as inputs—and ConfuciuX—which cannot optimize Transformer.
Lower is better.

ConfuciuX and HASCO produce inefficient designs primarily because

of their limited design spaces—neither aims to co-design loop tile sizes with

scratchpad sizes, and we show in Section 4.4.3 that co-design of these parameters

is the primary reason that Spotlight performs well. Additionally, ConfuciuX and

HASCO explore a severely limited set of software mappings, but we show in

Section 4.4.5 that this is not a crippling limitation.

Not surprisingly, of the hand-designed DLAs, MAERI generally achieves

the lowest delay, followed by NVDLA and then Eyeriss. MAERI is highly flexible,

so it can efficiently execute a wider variety of layer shapes than NVDLA and

Eyeriss. NVDLA achieves lower delay than Eyeriss because it spatially unrolls

the K and C dimensions, which exhibit higher parallelism in the mid and late

layers of every evaluated model than the X and Y dimensions that Eyeriss unrolls.

Eyeriss performs especially poorly on Transformer because we convert the GEMM

operations that compose Transformer into convolution operations, which results

54

in layer shapes that Eyeriss is not designed to efficiently execute.

Figure 4.3 presents results for cloud-scale DLAs when Spotlight minimizes

EDP (top graphs) and delay (bottom graphs). We do not compare against HASCO

or ConfuciuX because they do not support cloud-scale DLAs out-of-the-box. For

this experiment, the only change we make to Spotlight is to change the range

of parameters; we do not change the feature space or otherwise tune BO for the

cloud setting. These results follow the same trends as the edge-scale DLAs.

4.4.2 Multi-Model Co-Design

Spotlight can also be used to co-design one DLA with many DL models.

Such a DLA might be deployed as an ASIC, so it must efficiently execute a variety

of DL models and remain efficient as new DL models are developed.

Specifically, we consider two realistic deployment scenarios: (1) We assume

that all the DL models are known at design-time, which is common for dedicated

IoT DLAs; and (2) we assume that only a limited set of models is known at

design-time, and the hardware is expected to generalize to unseen models.

The key takeaway: Spotlight can automatically design programmable

DLAs that frequently outperform programmable hand-designed DLAs.

Figure 4.4 shows results for both EDP (top graphs) and delay (bottom

graphs), comparing Spotlight’s design against hand-designed DLAs that are

designed to generalize. Spotlight-Single shows the results of single-model co-

design, as described in Section 4.4.1. Spotlight-Multi shows the results of

deployment scenario (1), and Spotlight-General shows the results of deployment

scenario (2).

To emulate the first scenario, we co-design a DLA with all five DL models

as input to Spotlight and then re-run Spotlight’s layerwise optimizer (daBOSW) for

each model independently on the resulting DLA. Unsurprisingly, Spotlight-Multi

55

1014

1015

1016

1017

1018

nJ
×C

yc
le

s
(L

og
)

57× 27× 8× 1×
VGG16

1014

1016

23× 7× 6× 1×
ResNet-50

1013

1015

9× 3× 6× 1×
MobileNetV2

1011

1012

1013

1014

nJ
×C

yc
le

s
(L

og
)

16× 4× 6× 1×
MnasNet

1014

1016

1018

1020 4776× 205× 10× 1×
Transformer

Eyeriss-Cloud
NVDLA-Cloud
MAERI-Cloud
Spotlight

(a) EDP

104

106

108

Cy
cl

es
 (L

og
)

20× 15× 10× 1×
VGG16

104

105

106

107
6× 5× 6× 1×

ResNet-50

104

105

106

107
3× 3× 6× 1×

MobileNetV2

103

104

105

106

Cy
cl

es
 (L

og
)

5× 4× 6× 1×
MnasNet

105

106

107

108

109
52× 19× 7× 1×

Transformer

Eyeriss-Cloud
NVDLA-Cloud
MAERI-Cloud
Spotlight

(b) Delay

Figure 4.3: Comparison of (a) EDP (nJ×Cycles) and (b) delay (Cycles) of Spotlight
against scaled-up versions of hand-designed DLAs. Lower is better.

56

1014

1016

1018

nJ
×C

yc
le

s
(L

og
)

95× 24× 12× 1× 2×
VGG16

1014

1016

44× 12× 9× 1× 2×
ResNet-50

1011

1013

1015

26× 12× 7× 1× 2×
MobileNetV2

1011

1013

1015

nJ
×C

yc
le

s
(L

og
)

33× 12× 9× 1× 2× 1×
MnasNet

1015

1018

1021 1179×902× 7× 1× 29× 12×
Transformer

Eyeriss-Like
NVDLA-Like
MAERI-Like
Spotlight-Single
Spotlight-Multi
Spotlight-General

(a) EDP

105

106

107

108

109

Cy
cl

es
 (L

og
)

20× 17× 10× 1× 2×
VGG16

105

106

107

108
12× 12× 9× 1× 2×

ResNet-50

104

105

106

107
11× 10× 7× 1× 2×

MobileNetV2

104

105

106

107

Cy
cl

es
 (L

og
)

12× 11× 9× 1× 1× 1×
MnasNet

105

107

109
150× 87× 16× 1× 10× 6×

Transformer
Eyeriss-Like
NVDLA-Like
MAERI-Like
Spotlight-Single
Spotlight-Multi
Spotlight-General

(b) Delay

Figure 4.4: The EDP (nJ×Cycles) (a) and delay (Cycles) (b) of the best designs
found in the single-model co-design (green), the multi-model co-design (purple),
and the generalization (yellow) scenarios. For the generalization scenario, we co-
design the DLA with VGG16 ResNet-50 and MobileNetV2, and we evaluate it on
MnasNet and Transformer. Thus, only MnasNet and Transformer have yellow
bars. Lower is better.

57

has higher EDP and delay than Spotlight-Single because Spotlight-Single finely

tunes each DLA for a single model. However, Spotlight-Multi still almost always

outperforms each hand-designed DLA, highlighting the benefits of automated

design.

To emulate the second scenario, we evaluate whether the hardware co-

designed with a subset of DL models—VGG16, ResNet-50, and MobileNetV2—

generalizes well to other DL models—MnasNet and Transformer. We co-design

a DLA by providing the first three models as input to Spotlight, and then given

the resulting DLA we run daBOSW independently for each of the last two models.

We find that Spotlight-General has slightly higher EDP and delay than Spotlight-

Single. Rather counterintuitively, we see that Spotlight-General has lower delay

and EDP than Spotlight-Multi. We conjecture that when simultaneously co-

designing for five models, daBOHW is unable to learn correlations among the

complex software space spanning hundreds of unique layers, so the resulting

DLA is no longer as efficient for any single model.

4.4.3 Discussion

To understand the benefit of Spotlight, we compare its optimized designs

with the behavior of the hand-designed DLAs and HW/SW co-design tools.

The single most significant benefit of using Spotlight is its ability to co-

design scratchpad sizes with tile sizes and loop unrolling properties, which

leads to improved data locality. For example, given the same area and power

budget, when Spotlight’s optimized configuration, called Spotlight-Opt, runs

ResNet-50, it achieves 26× higher throughput per Joule than Eyeriss, 28×
higher than NVDLA, and 8.3× higher than MAERI. The main source of this

improvement is greater input and weight reuse, computed as reads per fill, in

the scratchpad and register file within each PE. Eyeriss and NVDLA, which have

rigid software mappings and fixed hardware, are unable to adjust the spatially

58

unrolled dimension or on-chip memory sizes, so they cannot maintain high

on-chip memory utilization for diverse layer shapes. MAERI supports flexible

dataflows but still has fixed on-chip memory sizes, so it loses a degree of freedom

compared to Spotlight, which finds a better balance between PE count and on-

chip memory space than MAERI, so Spotlight-Opt has higher average utilization

of both.

Qualitatively, the same reasoning explains Spotlight’s improvement over

HASCO and ConfuciuX. Neither HASCO nor ConfuciuX explores tile sizes nor

spatial unroll dimension, so these tools struggle to produce designs that match

the efficiency of Spotlight-Opt.

Additionally, Spotlight achieves good results through a series of small

wins, which designers often do not consider, during the execution of each layer.

For example, we find that Spotlight often produces DLAs with a long and narrow

PE array, resulting in two benefits: (1) on the narrow side of the array, network

latency is lower and there are fewer unicast operations, and (2) the layer edge

cases, which result in low utilization and add tail latency, are smaller and thus

have smaller impact on overall runtime. These results (1) illustrate the importance

of co-design and (2) the benefits of automated co-design over manual co-design.

4.4.4 Feature Space Analysis

We have demonstrated that Spotlight can efficiently co-design DLAs and

software mappings. We now peer into daBO to understand the source of

Spotlight’s benefits.

Specifically, we rank the importance of each feature. For each instance of

daBOSW in single-model configuration, we compute permutation importance [6]:

After the GP is trained, we randomly perturb each feature in turn and measure

the resulting change in the surrogate model’s prediction. Features that cause large

changes are considered to be more important.

59

VGG16

ResN
et-5

0

Mobile
NetV

2

MnasN
et

Tra
nsfo

rm
er

0.00

0.25

0.50

0.75

1.00
Parallelism Available in Kernel
Size of Commonly Unrolled Dimensions
Degree of Spatial Unrolling
PE Utilization
Number of Loop Iterations to Completion
Approximate Transfers from DRAM

Figure 4.5: The relative importance of each feature in daBOSW.

Figure 4.5 shows the relative importance of each feature. Aside from

Transformer, for which “parallelism available in the kernel” is dominant, no single

feature is the sole indicator of performance. Parallelism is especially important for

the Transformer model because Transformer is dominated by GEMM operations,

which when converted to convolution operations result in large and uneven

kernel sizes. In general, the most important feature varies.

We repeat this experiment with two modified configurations of Spotlight:

(1) with only vanilla parameters instead of features (Spotlight-V) and (2) with

the union of all features and raw parameters (Spotlight-A). We find the exact

same result: There are typically a few features, which are different for each

model, that are the most indicative of performance. We find that Spotlight-A

produces DLAs that are on par with Spotlight, and both Spotlight and Spotlight-

A produce better DLAs than Spotlight-V. This observation indicates that while

good feature selection is still critical, Spotlight is somewhat resilient to the precise

feature selection.

60

4.4.5 Ablation Study

To isolate the benefits of the daBO framework we compare sample

convergence against ConfuciuX and four different optimization algorithms within

the Spotlight tool—i.e., we replace daBOHW and daBOSW with each of the

following five algorithms: genetic algorithm (Spotlight-GA), random search

(Spotlight-R), vanilla BO (Spotlight-V), and BO with fixed software mapping

options (Spotlight-F). More specifically, Spotlight-V is identical to off-the-shelf

BO because it directly explores the parameter space instead of the feature space.

Spotlight-F explores the Spotlight feature space, but it only explores the three

software mappings supported by ConfuciuX—namely, Eyeriss-like, NVDLA-

like, and ShiDianNao-like—and it only explores tiling factors in the K and C

dimensions.

The key takeaway: Bayesian optimization is a strong starting point

and is further enhanced by the introduction of the feature space. Moreover,

most of the designs selected by Bayesian optimization are superior to the best

configuration produced by competing algorithms.

Figure 4.6 shows how each optimization algorithm, including ConfuciuX,

converges—as a function of wall-clock time—to a minimized EDP and delay when

co-designing a single model. The shaded region represents the minimum and

maximum of 10 optimization trials, and the solid line represents the median. We

are unable to collect per-sample data with HASCO, so we denote with a dashed

line the best result of HASCO’s 10 trials.

BO consistently achieves lower EDP and delay than random search, genetic

algorithm, ConfuciuX, and HASCO. Furthermore, our results suggest that given

unlimited runtime, ConfuciuX may never achieve the same quality of solutions

that Spotlight can achieve in a few hours. Moreover, both Spotlight and

Spotlight-F, which use domain information, outperform Spotlight-V, which does

not use domain information, by up to 2× in all cases except for Transformer.

61

0.0 0.5 1.0

1016

1017

1018
nJ

×C
yc

le
s

(L
og

)
VGG16

0 1 2
1015

1016

ResNet-50

0.0 0.5 1.0 1.5
Time (Hours)

1014

1015 MobileNetV2

0 1 2
Time (Hours)

1013

1014

nJ
×C

yc
le

s
(L

og
)

MnasNet

0.0 0.2 0.4
Time (Hours)

1014

1016

1018

1020

Transformer

Spotlight-GA
Spotlight-R
Spotlight-V
Spotlight-F
Spotlight

(a) EDP

0.0 0.5 1.0

107

108

109

Cy
cl

es
 (L

og
)

VGG16

0.0 0.5 1.0

107

108

109 ResNet-50

0.00 0.25 0.50 0.75
Time (Hours)

106

107

108 MobileNetV2

0.00 0.25 0.50 0.75
Time (Hours)

105

106

107

108

Cy
cl

es
 (L

og
)

MnasNet

0.0 0.2 0.4 0.6
Time (Hours)

105

106

107

108

109 Transformer
ConfuciuX
HASCO
Spotlight-GA
Spotlight-R
Spotlight-V
Spotlight-F
Spotlight

(b) Delay

Figure 4.6: The EDP (a) and Delay (b) during single-model co-design for five
optimization algorithms: Spotlight, three variations of Spotlight—random search
(Spotlight-R), BO with fixed dataflow (Spotlight-F), and vanilla BO (Spotlight-
V)—and two state-of-the-art co-design tools. For each layer of each hardware
design, Spotlight and variations evaluate 100 sample points in the software design
space. The solid line represents the median of 10 trials, and the shaded region
represents the minimum and maximum. Lower is better.

62

For Transformer, we compute permutation importance [1], as described in

Section 4.4.4, on the parameter space of Spotlight-V and the feature space of

Spotlight, and we find, unexpectedly, that the raw parameters have a larger impact

on the surrogate model’s prediction than our selected features. This observation

explains why Spotlight-V outperforms Spotlight, and it highlights the importance

of carefully selecting good for each specific application.

Our results also show that BO explores the co-design space more efficiently

than other algorithms. The domain of the X axis of Figure 4.6 is set to the

shortest wall-clock time of the evaluated algorithms—in most cases, Spotlight-

GA. Compared to Spotlight-GA, Spotlight-R evaluates 82% of the total number

of samples, and Spotlight evaluates 52% of the total number of samples. Though

Spotlight spends more time per-sample than Spotlight-GA and Spotlight-R, the

improved sample efficiency of daBO results in superior results within the same

wall-clock time.

We find that Spotlight-F outperforms Spotlight for VGG16 and

Transformer. Eyeriss is designed to be highly efficient when executing

VGG16 [11], and indeed we find that when minimizing either EDP and delay,

Spotlight-F selects an Eyeriss-like software mapping every time. Transformer is

dominated by GEMM operations (converted to convolution), which NVDLA-like

and ShiDianNao-like software mappings are able to execute efficiently. Because

the software mappings that Spotlight-F explores are already tuned for the layers

of VGG and Transformer, Spotlight-F has the advantage of exploring a simple

yet high-quality co-design space that can be explored more quickly than the co-

design space of Spotlight, so Spotlight-F achieves superior results within the same

wall-clock time.

To further evaluate the quality of each optimization algorithm, we present

Figure 4.7. This figure plots the cumulative distribution function (CDF) of

hardware sample points, which shows the percentage of total sample points

63

1016 1017 1018 1019
0

50

100

%
 o

f S
am

pl
es

s

VGG16

1015 1016 1017

ResNet-50

1014 1015 1016

nJ×Cycles (Log)

MobileNetV2

1013 1014 1015

nJ×Cycles (Log)

0

50

100

%
 o

f S
am

pl
es

s

MnasNet

1015 1018 1021 1024

nJ×Cycles (Log)

Transformer

Spotlight-GA
Spotlight-R
Spotlight-V
Spotlight-F
Spotlight

(a) EDP

107 108 109 1010
0

50

100

%
 o

f S
am

pl
es

s

VGG16

106 107 108 109

ResNet-50

106 107 108

Cycles (Log)

MobileNetV2

105 106 107 108

Cycles (Log)

0

50

100

%
 o

f S
am

pl
es

s

MnasNet

105 107 109 1011

Cycles (Log)

Transformer
ConfuciuX
Spotlight-GA
Spotlight-R
Spotlight-V
Spotlight-F
Spotlight

(b) Delay

Figure 4.7: Cumulative distribution function of hardware samples for each
optimization algorithm. Each line represents the results from 1 of 10 trials.
Further to the left is better.

64

evaluated that achieve a given EDP or delay. Each line represents 1 of 10 trials.

The CDFs for Spotlight and Spotlight-F are further left than those of the

competing algorithms, which indicates that Spotlight does not find just a single

good configuration, but it consistently finds designs that outperform the best

designs found by competing algorithms.

The CDF for Spotlight-R is Gaussian, while the other optimization

algorithms have a steep initial slope, which means that many of the sample

points achieve EDP or delay that is similar to the final optimized configuration.

Specifically, 81.7% of the hardware samples that Spotlight selects are better than

the best results that Spotlight-R finds. So, it is clear that BO is conducting a higher

quality optimization.

4.5 Conclusion

In this chapter, we have presented Spotlight, an automated framework

for performing hardware/software (HW/SW) co-design of DLAs. We have

also presented daBO, our novel Bayesian optimization framework that is

critical to Spotlight’s success because it incorporates domain information into

the automated optimization process. We have empirically demonstrated that

Spotlight can produce highly efficient HW/SW co-designs that are orders of

magnitude better than competing solutions, including both manually designed

DLAs and those designed by state-of-the-art tools.

Philosophically, we observe that prior work [15, 109, 125] manually applies

domain information to define dramatically smaller co-design spaces to explore,

but because the co-design space is so complex, this manual pruning apparently

removes many of the best design points from the design space. By contrast,

Spotlight gets great power by embracing a vast co-design space and incorporating

the domain information into the automated optimization process, thereby giving

Spotlight a mechanism for finding many of the best design points.

65

Chapter 5: Starlight

One of the key design choices when building a HW/SW co-design tool

is the choice of evaluation framework. The co-design tool could evaluate

configurations with high fidelity, e.g., using an RTL simulator, but the long latency

of such techniques would restrict the HW/SW co-design tool to only considering

a small number of configurations, severely limiting the tool’s ability to find a

high-quality design. Alternatively, the tool could evaluate a large number of

configurations using a fast evaluation method, e.g., an analytical model, but such

techniques have low fidelity because they do not capture the nuances of circuitry

or runtime behavior. Figure 5.1 illustrates this tradeoff: As the fidelity of the

measurement increases, the number of configurations that a HW/SW co-design

tool can evaluate dramatically decreases.

Prior work [35, 59] attempts to break this tradeoff by using a fast data-

driven model that has been trained to predict a design’s performance as measured

by a high-fidelity method, such as RTL simulation. Such a data-driven model

can be queried even faster than an analytical model and produces results that

approach the accuracy of RTL simulation. Unfortunately, the training required

to produce such a data-driven model itself requires thousands of high-fidelity

evaluations [35, 59]—which is difficult to collect even as a one-time investment—

presenting the same tradeoff that the data-driven model was intended to break.

In this chapter, we break this tradeoff by employing a technique called

transfer learning to more efficiently train a data-driven model. In general, transfer

learning uses a data-driven model that is trained to perform one prediction task

to reduce the training data necessary to perform a similar but different prediction

task. We use transfer learning to create a data-driven model in which a large

number of slow, high-fidelity evaluations (RTL simulations) is replaced by a larger

66

Analytical
Model

RTL
Simulator

Starlight
100

102

104

106

108

Co
nf

ig
s

/ H
ou

r
(lo

g)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy Configs / Hour

Accuracy

Figure 5.1: Analytical models can be queried thousands of times an hour, but
they are inaccurate, whereas an RTL simulator is accurate but slow. Our data-
driven model, Starlight, breaks this tradeoff by predicting performance orders
of magnitude faster than an analytical model and with 99% accuracy when
compared to an RTL simulator. Data is collected from Parashar et al. [82],
Karandikar et al. [50], and Mũnoz-Martinez et al. [75].

number of fast, low-fidelity evaluations (analytical model). We are the first to

apply transfer learning in this way.

Figure 5.1 shows that our data-driven model, called Starlight, is faster to

query than an analytical model and achieves 99% accuracy when predicting the

energy-delay product of a DLA. Moreover, Starlight is trained with 61% fewer

high-fidelity evaluations and achieves higher accuracy than DOSA’s state-of-the-

art data-driven model [35].

We make the following contributions:

• We demonstrate that transfer learning is an effective method of building

data-driven performance models. Our model is trained with 61% fewer

evaluations than DOSA’s state-of-the-art data-driven model [35].

• We present Starlight, a data-driven model that predicts with 99% accuracy

the energy-delay product of a DLA as measured by RTL simulation. With

67

its use of transfer learning, Starlight is trained in 2 minutes on a consumer-

grade CPU.

The remainder of this chapter is organized as follows. We first motivate

Starlight’s design in Section 5.1 before presenting details in Section 5.2. We

then evaluate the performance and accuracy of Starlight in Section 5.3. Finally,

Section 5.5 provides concluding thoughts.

5.1 Motivating Studies

We are motivated to design Starlight because (1) we ideally develop a

HW/SW co-design tool that co-designs real hardware, but (2) we observe that

Spotlight is unable to properly explore the co-design space of real hardware

because its surrogate model is highly inaccurate, even when trained with tens

of thousands of configurations. In this section, we first study the accuracy of

Spotlight’s surrogate model and then show how transfer learning is a promising

approach to improve its accuracy.

5.1.1 Spotlight’s Accuracy

To measure the accuracy of Spotlight’s surrogate model—a GP with a linear

kernel—we first collect a dataset of thousands of HW/SW samples and their

respective energy-delay products (EDPs) measured by an analytical model and

RTL simulator. We use 90% of the dataset to train the GP in two configurations—

with a linear kernel and with a Matérn kernel—using the features described in

Table 4.2. We then predict the EDP of the remaining 10% of the dataset. The

surrogate model need not predict the absolute EDP value, but it should be able

to predict trends so that the acquisition function can accurately select promising

configurations [59]. So we compare the predicted values with the ground truth

using the Spearman rank correlation coefficient (ρ) [27], which measures the

68

107 109 1011 1013 1015 1017 1019

pJ×Cycles (log)

0.00

0.02

0.04

0.06
Fr

eq
ue

nc
y

Analytical Model
RTL Simulator

Figure 5.2: The distribution of energy-delay products of HW/SW configurations
as measured by an analytical model and RTL simulation. The similarity of the
distributions indicates that knowledge can be transferred between models.

difference in ordering between vectors such that a score of 1 indicates a strong

correlation and −1 indicates an inverse correlation.

Across the test set, ρ is equal to 0.0822 and 0.1127 for the linear and Matérn

kernels, respectively. In both cases the correlation is quite low. But, roughly 24%

of the top 20% of samples are correctly predicted, which we find is sufficient for

the acquisition function to occasionally select a high quality candidate. Hence,

Spotlight is able to outperform a state-of-the-art HW/SW co-design tool despite

having an inaccurate surrogate model. Though the Matérn kernel achieves a

slightly higher correlation than the linear kernel, when we run Spotlight with the

Matérn kernel we find no noticeable difference in search quality. This implies that,

to notice a difference, we must significantly improve the accuracy of the surrogate

model.

5.1.2 Transfer Learning

Recent work shows that data-driven approaches can accurately predict the

performance of real hardware [22, 35], but it is time-consuming and costly to build

a dataset from real hardware. The deep learning community has faced a similar

69

challenge when performing hyperparameter optimization—i.e., performing DSE

on DL model design parameters—and it leans heavily on transfer learning [2, 26,

81] as a solution, so we take the same approach.

Transfer learning can be applied when the knowledge used to predict one

task can be transferred to the prediction of a different task. Figure 5.2 shows the

distribution of EDPs as measured by an analytical model and an RTL simulator

for the same set of DLA designs and software mappings; we see that the two

distributions are similar, indicating that knowledge can be transferred between

models that predict the two distributions. It is still possible that, even though

the distributions of EDPs align, the relative ordering of the samples does not. To

quell this possibility, we measure ρ, which is equal to 0.99.

5.2 Model Design

In this section, we first present Starlight’s inputs and outputs and the

dataset used for training. We then present Starlight-Low, which is the source

model used to transfer knowledge to Starlight. Finally, we present Starlight,

which is an accurate performance estimator that predicts the energy-delay

product (EDP) of a DLA as measured by RTL simulation.

5.2.1 Inputs and Outputs

The inputs to Starlight-Low and Starlight are (1) the architectural

parameters of a DLA and (2) the software mapping of a single convolutional

layer. The main output of Starlight-Low is a scalar prediction of the energy-

delay product (EDP) of the design, but it also has an auxiliary output used for

training. The output of Starlight is a Gaussian distribution that predicts EDP such

that the mean represents the prediction and the standard deviation represents the

uncertainty.

70

Parameter Values
Spatial Array Dimensions 4x4, 8x8, 16x16, 32x32

Accumulator Size 8 to 256 KB (Step Size: 8)
Scratchpad Size 8 to 256 KB (Step Size: 8)

Loop Order Permutations of outermost loops
Tiling Factors† Divisors of layer shape

†Independent values per level of memory hierarchy.

Table 5.1: The ranges of parameter values in the input space of Starlight.

The precise hardware and software design space that Starlight-Low and

Starlight are trained on is shown in Table 5.1. In the hardware design space, both

models accept as input the spatial array size and the accumulator and scratchpad

sizes. In the software design space, both models accept as input the loop order

and tiling factors. The loop order is encoded as a numerical value from 0 to 6 for

each of the seven loops in the convolutional layer loop nest. All inputs are scaled

to the range [0, 1] using a min-max scaler.

The co-design space that Starlight accepts encompasses the co-design

spaces for a variety of DLAs [48, 47, 60, 39, 82], but it is notably smaller than

the co-design space that Spotlight explores. This is because Spotlight performs

evaluations using a flexible analytical model that supports a massive design

space [82], but Starlight is designed for use with real hardware with more limited

flexibility. In particular, Starlight is designed to predict EDP for the Gemmini [30]

DLA, which exposes the co-design space described above.

5.2.2 Dataset

To train Starlight-Low, we collect a dataset of samples from an analytical

model called Timeloop [82], and to train Starlight, and we collect a dataset of

samples from an RTL simulator called FireSim [50]. The datasets are collected by

performing Sobol sampling [98]—a sampling method that results in a balanced

dataset [21]—on the input space. We collect a total of 216 samples from Timeloop

71

(a) Without predictor network (b) With predictor network

Figure 5.3: The 2-D latent space of a VAE trained (a) without a predictor network
and (b) simultaneously with a predictor network. Each point represents a single
DLA design and software mapping that is color-coded by the EDP as measured
by an analytical model. The predictor network induces structure, as indicated by
the gradient of EDPs, in the latent space.

and 212 samples from FireSim.

We use both Timeloop and FireSim to measure the performance of the

Gemmini DLA [30] when executing individual layers from one of four DL models,

as we describe in more depth in Section 5.3.

A limitation of our training data, and consequently of Starlight, is that

FireSim does not measure energy consumption, so, like prior work [35], we

measure energy consumption using Timeloop. For the remainder of this

dissertation, when we refer to EDP, we specifically mean the product of energy

consumption as measured by Timeloop and delay as measured by FireSim.

5.2.3 Starlight-Low

Starlight-Low is a neural network that predicts the EDP of Gemmini as

measured by a low-fidelity method, namely, Timeloop [82]. Starlight-Low is used

as the source model to transfer weights to Starlight.

72

In
pu

t F
ea

tu
re

s

Encoder
Network

Predictor
Network

Decoder
Network

Latent
Encoding

Re
pr

od
uc

ed
 F

ea
tu

re
s

EDP Prediction
EDP Prediction

(Probability Distribution)

Gaussian
Process

Starlight-Low

1. Transfer encoder
 network

2. Fine-tune with RTL
 simulation dataset

(T
ili

ng
 fa

ct
or

s,
 s

ys
to

lic
 a

rr
ay

 s
iz

e,
 e

tc
.)

Fine-Tuned
Latent

Encoding

In
pu

t F
ea

tu
re

s
(T

ili
ng

 fa
ct

or
s,

 s
ys

to
lic

 a
rr

ay
 s

iz
e,

 e
tc

.)

A StarlightB

Figure 5.4: A Starlight-Low is a neural network that predicts the energy-
delay product (EDP) of a DLA as measured by a low-fidelity method, namely,
an analytical model. The encoder network (in blue dotted pattern) from Starlight-
Low is transferred to B Starlight, which is a machine learning model based
on deep kernel learning that predicts the EDP as measured by a high-fidelity
method, namely, an RTL simulator. The decoder network is dropped because it is
no longer needed.

The model architecture for Starlight-Low is based on a variational

autoencoder (VAE) because VAEs reduce the dimensionality of the inputs,

which is important when we incorporate a Gaussian process in Section 5.2.4.

Traditionally, a VAE connects an encoder network to a symmetric decoder

network and is trained to make the output reproduce the input exactly. We

build and train a traditional VAE that encodes inputs into a 2-D latent space,

which is shown in Figure 5.3a. Each point represents a HW/SW configuration,

and the color indicates the EDP as measured by an analytical model. There is

no apparent structure to the latent space, which indicates that the encoder is not

properly learning the semantics of the inputs. Consequently, the latent space

cannot reliably be used to make EDP predictions.

To induce structure in the latent space, as shown by the smooth gradient of

EDPs in Figure 5.3b, prior work [32, 36] simultaneously trains a predictor network

alongside the encoder and decoder networks. Figure 5.4 A shows the model

73

architecture of Starlight-Low, which implements this technique. The inputs are

encoded into the latent space and then fed to two outputs: the predictor network,

which predicts the EDP of the configuration, and the decoder network, which

reproduces the inputs to ensure that significant information is not lost in the

latent space.

The final architecture of Starlight-Low is precisely as follows. The encoder

network comprises fully connected layers of sizes 40, 24, 12, and 2, and the

decoder network is a mirror image. The predictor network comprises fully

connected layers of sizes 2, 64, 256, 256, 64, and 1. In all cases, layers are fed

through a ReLU activation function.

Starlight-Low is trained to minimize (1) the mean squared error between

the predicted EDP and ground truth EDP, (2) the mean squared error between the

reproduced inputs and actual inputs, and (3) the Kullback-Leibler divergence [58],

which is a measure of the difference between probability distributions, between

the latent encoding and unit multivariate Gaussian distribution. Minimizing KL

divergence is the standard approach to ensure that the VAE does not collapse to

a traditional autoencoder during training.

5.2.4 Starlight

Starlight is a machine learning model that predicts the EDP of a DLA

as measured by a high-fidelity method, namely, an RTL simulator. Because

Starlight is designed for use within a Bayesian optimization (BO) framework,

it must provide a reliable measurement of uncertainty. To achieve this, we

build Starlight using a technique called deep kernel learning [114] that fuses a

neural network—which does not provide a measurement of uncertainty—with a

Gaussian process—which does provide a measurement of uncertainty.

To transfer knowledge from Starlight-Low to Starlight, we directly transfer

the weights from the encoder network of Starlight-Low. We then fine-tune

74

Starlight using a dataset of EDPs as measured by an RTL simulator. We

empirically validate this application of transfer learning in Section 5.4.

To build Starlight, we modify the architecture of Starlight-Low in two key

ways.

First, we remove the decoder network, which is used by Starlight-Low to

ensure that it is not losing information in the latent space. Because the well-

behaved latent space is transferred from Starlight-Low to Starlight, Starlight no

longer needs to be trained with a decoder network.

Second, we replace the predictor network in Starlight-Low with a Gaussian

process (GP). This neural model architecture, which ties together a neural network

and a GP, is known as deep kernel learning (DKL), and is essential for enabling

Starlight to be used as a surrogate model for a BO framework. DKL lends two

additional benefits: (1) unlike a standalone GP, which is the typical surrogate

model for a BO framework, DKL supports transfer learning, and (2) DKL trains

more robustly than other approaches, as shown in Section 5.4.

The final architecture of Starlight is shown in Figure 5.4 B . The GP

in Starlight uses a Matérn kernel [72] and gamma prior. To train Starlight, we

maximize the marginal log likelihood of the encoder and GP [114].

5.3 Evaluation

In this section we evaluate Starlight and Starlight-Low. Unless otherwise

specified, we use 80% of the datasets described in Section 5.2.2 for training and

the remaining 20% for testing.

Input DL Models We train Starlight and Starlight-Low to predict EDP of

executing individual layers from the following set of diverse DL models.

75

• U-Net [85] is a convolutional neural network used for biomedical image

segmentation.

• ResNet-50 [33] is convolutional neural network used for image classification.

• BERT [18] is a transformer used for natural language processing.

• RetinaNet [66] is convolutional neural network that adds on top of ResNet-

50 a feature pyramid network, classification head, and regression head. We

only evaluate the added layers in RetinaNet.

Performance Metrics We measure the accuracy of Starlight and Starlight-

Low using Spearman rank correlation, (ρ) [27], which compares the relative

ordering—as opposed to the precise value—of the predicted and ground truth

measurements. ρ ranges from -1 to +1, where -1 means the relative orders

are exactly reversed and +1 means the relative orders are identical. Because

Starlight is used as the surrogate model of Polaris, it need not predict the absolute

performance value with high accuracy; it is sufficient for it to have high positive

ρ. Nonetheless, we measure the typical accuracy metric—correlation coefficient—

and find it to be 97%. For the remainder of the evaluation, we measure accuracy

using ρ.

In the remainder of this section, we first present the accuracy of Starlight

and Starlight-Low, then we present a study that illustrates the benefits of transfer

learning and deep kernel learning. Finally, we present results that shed insight

into the characteristics of the HW/SW co-design space.

5.3.1 Accuracy

Figure 5.5 presents ρ during training. We perform ten independent trials

of training and plot the median (denoted by the central line) and cumulative

minimum and maximum (denoted by the shaded region). Starlight achieves ρ =

76

0 250 500 750 1000
Epochs

0.98

0.99

Ra
nk

 C
or

re
la

tio
n

Figure 5.5: Starlight predicts EDP measured by RTL simulation, with Spearman
rank correlation (ρ) of 0.99 after 1000 epochs of training. Across 10 independent
trials, Starlight consistently achieves a median ρ, shown with the solid line, of
greater than 0.98 within 100 epochs. Furthermore, the narrowness of the shaded
region, which denotes the cumulative minimum and maximum ρ across the 10
trials, shows that Starlight trains accurately irrespective of the specific partition of
training data that is used. Higher is better.

0.99 after 1000 epochs of training (2 minutes of training time on a consumer-

grade CPU), and it consistently achieves ρ ≥ 0.98 after just 100 trials (13 seconds

of training time on a consumer-grade CPU). Because the shaded region is narrow,

we conclude that Starlight is not sensitive to the specific partition of the training

data that is used.

Figures 5.6a and 5.6b show the accuracy and ρ for Starlight and Starlight-

Low, respectively. The X axis shows the ground truth EDP measured by either

FireSim for Starlight or by Timeloop for Starlight-Low, and the Y axis shows

the predicted EDP. Each dot represents a sample from the test set. If a sample

is predicted with perfect accuracy, it aligns with y = x. Both Starlight and

Starlight-Low achieve high accuracy—as is indicated by the average distance

across samples from y = x—and a ρ of 0.99.

Key Takeaway: Starlight achieves high accuracy when predicting EDP as

measured by RTL simulation.

77

(a) Starlight (b) Starlight-Low

Figure 5.6: Accuracy and Spearman rank correlation (ρ) of the actual EDP and the
predicted EDP for (a) Starlight and (b) Starlight-Low. Perfect accuracy is y = x
and ρ = 1.

5.4 Robustness

Starlight achieves higher accuracy than Starlight-Low on their respective

datasets. By comparing against three other performance estimation approaches,

we show, that Starlight’s high accuracy can be attributed to the use of both transfer

learning and deep kernel learning (DKL). First, we compare against a model

based on DKL with the same architecture as Starlight but that is trained from

scratch (DKL From Scratch). We then compare against a model that employs

transfer learning but trains a neural network predictor rather than a model based

on DKL (Transferred Encoder + NN Layers). Finally, we compare against a simple

fine-tuning of the source model, Starlight-Low, that is trained without the use of

transfer learning (Fine-Tuned Starlight-Low).

Each model is trained with a range of training set sizes, and the training

process and the partitioning of the training set are repeated for 10 independent

trials. Figure 5.7 shows the results. The X axis shows the number of samples in

the training set, and the Y axis shows ρ when each model predicts EDP of the test

78

400 700 1000 1300 1600
Training Set Size

0.965

0.970

0.975

0.980

0.985

0.990

0.995
Ra

nk
 C

or
re

la
tio

n

Starlight
Transferred Encoder + NN Layers
Fine-Tuned Source Model
DKL From Scratch

Figure 5.7: ρ versus the FireSim training set size. We evaluate four model
architectures: (1) Starlight, (2) a neural network that leverages transfer learning,
(3) a simple fine-tuning of Starlight-Low, and (4) Starlight-Low without any fine-
tuning. The solid line indicates the median of ten trials, and the shaded region
indicates the minimum and maximum. Starlight consistently achieves the highest
ρ and is more resilient to the training set size and partition than other models.
Higher is better.

set. The solid line indicates the mean of the trials, and the shaded region indicates

1 standard deviation across the trials.

Starlight consistently achieves the highest ρ out of the evaluated models,

irrespective of training set size. Furthermore, Starlight achieves the smallest

standard deviation across trials, indicating that it is the most robust of the

evaluated models.

When trained on the full training set, DKL From Scratch achieves a mean

of ρ = 0.973. Although this is high, it is significantly lower than the other models

evaluated, and the accuracy quickly deteriorates if the training set size is reduced.

Overall, DKL From Scratch consistently achieves the lowest accuracy. However,

Starlight also employs a model based on DKL, so we conclude that DKL requires

a large amount of data, but it can be robust and achieve high accuracy.

79

P2 P0 Q0 Q2 R0 S2

K O
rd

er S0

C O
rd

er

R O
rd

er R2 K2 C0

Sp
atia

l C C2

S O
rd

er R1

Sp
atia

l K R3 Q1 K0 P1

P O
rd

er

Q O
rd

er

Sp
atia

l A
rra

y S
ize P3

Parameter

0.00

0.05

0.10

0.15

0.20

0.25

0.30
M

ea
n

Temporal Tiling Factor
Spatial Tiling Factor
Loop Order
Architectural

Figure 5.8: The permutation importance for Starlight of each parameter in the
HW/SW co-design space.

To isolate the effects of transfer learning, we also compare against

Transferred Encoder + NN Layers. This model achieves high accuracy, but

Starlight consistently achieves higher accuracy, indicating that transfer learning

is beneficial. But DKL gives Starlight an edge over other approaches.

Finally, to further validate our use of transfer learning, We compare against

Fine-Tuned Starlight-Low. This model achieves high accuracy, but Starlight and

Transferred Encoder + NN Layers both consistently achieve higher accuracy.

5.4.1 Feature Importance

Because Starlight is a data-driven model that accurately predicts the

behavior of the HW/SW co-design space, we can leverage Starlight to gain insight

about the co-design space. To do so, we measure the relative importance on

the final EDP prediction of each parameter in the HW/SW co-design space.

Specifically, we measure a common metric called permutation importance [6],

which is measured by randomly perturbing each parameter in turn and

measuring the resulting change in Starlight’s prediction. Parameters that cause

80

large changes are considered to be more important.

Figure 5.8 shows the results of this experiment. It presents as the average

change in Starlight’s ρ when each parameter is perturbed. Parameters that have

little effect on ρ are omitted.

The most important parameters are the tiling factors, which are written as

the dimension of the factor and the level of the memory hierarchy at which the

factor is applied; 0 represents the tiling factor for the register file in the PE and 2

represents the tiling factor for the L2. Specifically, the most important factors are

the innermost and outermost factors of the largest dimensions of the input and

weight tensors: P (a.k.a. X), Q (a.k.a. Y), R, and S. Additionally, the loop order

of the K and C dimensions plays a significant role. These are the dimensions

that Gemmini spatially unrolls, so their loop order has significant impact on data

movement and consequently energy consumption and delay.

An unexpected result is that the hardware parameters have very little

impact on the final EDP prediction; the scratchpad size and accumulator size

have such little impact that they’re omitted. One explanation for this behavior is

that the tiling factors truly are the most important determining factor of the EDP.

But this contradicts the results in Chapter 6.6.2, which shows that the spatial array

size can significantly impact EDP. Instead, we hypothesize that the permutation

importance measurement cannot directly capture the importance of the hardware

parameters. In particular: Although the HW/SW co-design space is heavily

constrained, Starlight treats the model’s input as an unconstrained, continuous

space, so perturbing a hardware parameter results in a HW/SW configuration

that achieves similar EDP but cannot be physically realized. This behavior

is more prominent for hardware parameters than software parameters because

perturbations to a hardware parameter render the entire software mapping

invalid, whereas perturbations to a software parameter may only render at most

one parameter invalid.

81

5.5 Conclusion

In this chapter, we have shown that transfer learning can be effectively

employed to transfer knowledge from a low-fidelity performance model to a high-

fidelity performance model. In particular, we have shown that we can take a data-

driven model that has been trained using a fast analytical performance model

to reduce the number of slow evaluations needed to train a high-fidelity data-

driven model. Our resulting data-driven model, called Starlight, is faster to query

than an analytical model and achieves 99% accuracy when predicting the energy-

delay product of a DLA. Moreover, Starlight is trained with 61% fewer high-

fidelity evaluations and achieves higher accuracy than DOSA’s state-of-the-art

data-driven model [35].

82

Chapter 6: Polaris

Most HW/SW co-design tools evaluate candidates using an analytical

model [15, 36, 45, 49, 73, 77, 87, 122, 109], but because analytical models do not

capture all the nuances of real hardware, the designs produced by these tools

may not be optimal if realized in hardware. Consequently, it becomes necessary to

incorporate some form of real hardware evaluation in the HW/SW co-design tool.

Unfortunately, it is challenging to do so because of two seemingly contradictory

constraints: (1) the performance function for hardware is more complex than the

performance function for an analytical model [35], so a HW/SW co-design tool

must evaluate many samples to accurately learn the shape of the performance

function, but (2) hardware evaluation is slow, so the co-design tool must be

extremely sample-efficient.

We might be tempted to perform HW/SW co-design with the high-

accuracy data-driven model, Starlight, using the offline approach that prior work

has taken [59], namely, perform optimization on Starlight and only evaluate the

final resulting design with RTL simulation. But even a highly accurate model

ignores details of the real hardware, so a design that is deemed high-quality by

the model might not be high-quality when translated to real hardware. Thus, it

might be necessary to perform RTL simulation in the optimization loop, which

is known as online co-design. Others have suggested that offline approaches are

sufficient [59], but in this chapter, we show for the first time that there is significant

advantage to building an online HW/SW co-design tool to ensure that the designs

are faithful when translated to real hardware.

We do this by building Polaris, a HW/SW co-design tool that integrates

Starlight into a Bayesian optimization (BO) framework. BO is sample-efficient

because it carefully selects the designs that should be evaluated using RTL

simulation. In particular, BO uses Starlight to balance the exploitation of

83

promising regions of the co-design space with the exploration of uncertain regions

of the co-design space. Polaris produces DLA designs that reduce the energy-

delay product by 2.7× over DOSA [35], a state-of-the-art offline HW/SW co-

design tool.

We make the following contributions:

• We build a HW/SW co-design tool, Polaris, that evaluates candidate designs

using RTL simulation in the optimization loop. Polaris produces in just 35

minutes DLA designs and software mappings that have lower energy-delay

product than those produced in 6 hours by a state-of-the-art tool, DOSA [35],

which uses an offline approach. And within 3.3 hours, Polaris’ designs

achieve an average reduction of 2.7× in energy-delay product over the best

designs produced by DOSA.

• We empirically demonstrate the benefits of enabling a HW/SW co-design

tool to perform RTL simulation in the optimization loop. Compared to an

offline approach that optimizes Starlight directly, Polaris achieves an average

reduction of 5.15× in energy-delay product.

The remainder of this chapter is organized as follows. We present Polaris in

Section 6.1, and we evaluate it in Section 6.2 before providing concluding remarks

in Section 6.3.

6.1 Polaris

Polaris is a Bayesian optimization (BO) framework built around Starlight

that explores the co-design space of DLA design parameters and software

mappings. Specifically, the inputs to Polaris are the shapes of the convolutional

layers to be optimized; the outputs are the (1) architectural parameters for a

DLA and (2) software mappings that minimize the energy-delay product (EDP)

84

Parameter Values
Spatial Array Dimensions 4x4, 8x8, 16x16, 32x32

Accumulator Size 8 to 256 KB (Step Size: 8)
Scratchpad Size 8 to 256 KB (Step Size: 8)

Loop Order Permutations of outermost loops
Tiling Factors† Divisors of layer shape

†Independent values per level of memory hierarchy.

Table 6.1: The ranges of design parameters that Polaris explores.

measured by RTL simulation. Polaris uses Starlight as its surrogate model, and it

uses upper confidence bound [99] as its acquisition function.

In this section, we first describe Polaris’ iterative hardware-software design

process. We then describe the hardware and software optimizers.

6.1.1 Co-Design Space

The co-design space used in this work is the same as the co-design space

that Starlight is trained to make predictions on—i.e., the co-design space exposed

by the paramaterizable Gemmini DLA [30]. We reproduce in Table 6.1 the precise

hardware and software design spaces presented in Chapter 5.

6.1.2 Iterative Hardware-Software Design

It is challenging for a HW/SW co-design tool to simultaneously co-

design both the hardware design and software mappings for all layers of a

model because the co-design space is enormous: It is the Cartesian product

of all hardware and software design parameters, e.g., O(10140) for ResNet-50,

which is a neural network used for image classification. Thus, similar to prior

work [36, 67, 87, 109, 122, 129], Polaris is built using an iterative approach; it first

selects a hardware candidate, then it optimizes each layer individually to find a

software mapping that minimizes the EDP of running that layer on the selected

85

For n iterations

Enumerate HW
Candidates

H1

HW Optimizer

Assess HW
Candidates

H2 Sample SW CandidatesS1 Assess SW
Candidates

S2

RTL Simulator

... ...

Performance
Measurement

For m iterations

SW Optimizer (Per Layer)

SW Optimizer

Evaluate MappingsS3S4 Train Starlight

Figure 6.1: Polaris is a HW/SW co-design tool that takes as input layer shapes that
define the workload to be optimized and outputs an optimized DLA and software
mappings. The optimizer is split into an outer loop to optimize hardware and an
inner loop to optimize software. The sequence of operations is as follows. A
hardware candidate is selected (H1) and rounded to the nearest—as measured
by distance in the latent space—implementable configurations (H2). Then,
software candidates are selected for every layer (S1) and rounded to the
nearest implementable configurations (S2) before being evaluated with an RTL
simulator (S3). Finally, Starlight is updated with the new evaluations (S4). The
process repeats for n trials in the hardware optimizer and m trials in the software
optimizer.

hardware candidate. Figure 6.1 shows an overview of our approach.

At first glance this approach seems straightforward. However, it is

challenging to optimize EDP when using a layerwise software optimizer. EDP

is typically computed as the product-of-sums across all layers in a model.

But, a layerwise software optimizer computes EDP as the product of energy

consumption and delay of a single layer, and the individual products are

summed to compute the EDP of the full model—i.e., it is computing the sum-

of-products. Consequently, Polaris is not minimizing the typical product-of-sums

EDP measurement.

To verify that Polaris still finds designs that minimize the product-of-sums

EDP measurement, we perform the following experiment. We run the layerwise

86

Figure 6.2: The layerwise software optimizer is run for 7 iterations across all
layers of BERT. Each point represents BERT’s energy consumption and delay for
one combination of layers. The starred point, which is the global minimum EDP,
is correctly identified even though the layerwise optimizer only optimizes EDP
for a single layer at a time.

software optimizer for 7 iterations across all 5 layers of BERT and compute

the product-of-sums EDP measurement by computing the energy consumption

and delay for all possible combinations of layers—each of the 5 layers has 7

mappings, so we compute energy and delay for all 75 possibilities. This is an

O(ml) operation, where m is the number of iterations and l is the number of

layers in the model. Figure 6.2 shows all combinations, and the bottom left

contains the mappings with the lowest EDP. We also compute the individual EDP

for each iteration of each layer. We then find the minimum for each layer across

the 7 iterations and select the mappings with the lowest EDP. This is an O(m)

operation. The point is marked with the orange star, and it exactly matches the

lowest product-of-sums EDP measurement. Thus, we conclude that our layerwise

approach safely finds the correct minimum.

87

6.1.3 Hardware Optimizer

The first step in an iteration of optimization with Polaris is to select a

hardware candidate. In a traditional Bayesian optimizer, the acquisition function

is maximized to select a candidate. However, the result is a value in a continuous

input space, while the hardware design space is discrete. So Polaris instead

enumerates the entire discrete hardware design space of 8 × 32 × 32 designs

defined in Table 6.1, and then Polaris selects the candidate that maximizes the

value of the acquisition function. Figure 6.1 shows this process; H1 shows

with shapes the candidates in the hardware design space, and H2 shows

the candidates being assessed by the acquisition function. The candidate that

maximizes the acquisition function is shown with a filled circle, and it is fed as

input to the software optimizer. The hardware optimization process is repeated

for n iterations.

6.1.4 Layerwise Software Optimizer

Given a hardware candidate, the layerwise software optimizer finds

optimized software mappings layer-by-layer. The process is similar to that of

the hardware optimizer.

The first step is to select a software candidate. Because the software

design defined in Table 6.1 is much larger than the hardware design space, it

is infeasible to exhaustively enumerate the software space. To reduce its size

without deteriorating its quality, we enforce three reasonable constraints: (1)

the designs must be implementable on the selected hardware candidate, (2) the

spatially unrolled dimensions—the C and K dimensions for Gemmini—should

maximize the utilization of the hardware, and (3) the tiling factors should evenly

divide the shape of the layer so that there are no extraneous edge cases that

increase the tail latency when running the layer. Even after applying these

constraints, the software design space can still contain millions of points. Thus,

88

Polaris selects a software candidate as follows: It randomly draws 10,000 samples

from the large, constrained software space, and it then assesses each of the

candidates with the acquisition function, selecting the software candidate that

maximizes the acquisition function. This process is shown in Figure 6.1 S1

and S2 . The software candidate that is selected is shown with a heart, and

the hardware candidate selected by the hardware optimizer is still shown with a

circle.

Once the HW/SW candidate is selected, it is evaluated on an RTL

simulator, FireSim [50], as shown in S3 , and Starlight is trained with the new

evaluation, as shown in S4 . The software optimization process repeats for m

iterations.

6.2 Evaluation

In this section we evaluate Polaris. We first present our methodology.

DL Models We co-design separate DLAs with each of four diverse DL models.

• U-Net [85] is a convolutional neural network used for biomedical image

segmentation.

• ResNet-50 [33] is convolutional neural network used for image classification.

• BERT [18] is a transformer used for natural language processing.

• RetinaNet [66] is convolutional neural network that adds on top of ResNet-

50 a feature pyramid network, classification head, and regression head. We

only evaluate the added layers in RetinaNet.

Hardware Software Co-Design Tools We compare Polaris against three

baselines.

89

First, we compare against a baseline that we call Offline Random, which

draws random samples from the hardware and software design spaces and

evaluates them on Starlight. The configuration that minimizes the EDP as

predicted by Starlight is evaluated using RTL simulation. Offline Random

allows us to make a direct comparison between offline optimization—i.e.,

optimizing a proxy model without evaluating intermediate candidates using

RTL simulation—and online optimization—i.e., performing optimization by

evaluating intermediate candidates using RTL simulation.

Second, we compare against DOSA [35], which is a state-of-the-art

HW/SW co-design tool that uses the same evaluation methodology as Polaris.

DOSA uses the Adam optimizer [53] on a data-driven proxy model to find a

HW/SW configuration that minimizes the EDP as predicted by its proxy model.

The resulting design is evaluated using RTL simulation—i.e., DOSA performs

offline optimization. DOSA explores a smaller design space than Polaris. In

particular, it does not explore the spatial array dimensions, and it only explores

three possible loop orders.

Third, we compare against Spotlight [87], a state-of-the-art HW/SW co-

design tool that performs a feature transformation to improve the sample-

efficiency of a vanilla Bayesian optimization framework. We adapt the

methodology used by Sakhuja et al. [87] to evaluate candidates using RTL

simulation in Polaris’ design space. Spotlight performs online optimization.

Design Scenarios We evaluate all baselines in two design scenarios. First, we

perform HW/SW co-design as described previously. However, DOSA does not

include the spatial array dimensions in its design space, and we find that the

spatial array dimension significantly affects EDP. So we evaluate the baselines

in a second design scenario: software design space exploration (DSE). When

performing software DSE, we use the DLA designs found by DOSA and only

90

perform layerwise software optimization.

Number of Iterations When performing HW/SW co-design, Spotlight and

Polaris run for n = 8, m = 6 iterations. For fairness, Offline Random draws

8 × 6 × 10000 = 480000 samples per layer from the HW/SW co-design space

(recall that Polaris evaluates 10,000 samples on the acquisition function per

software iteration). When performing software DSE, Spotlight and Polaris run

for m = 20 iterations, and Offline Random draws 20 × 10000 = 200000 samples

per layer from the software design space. Polaris and Spotlight both run for three

independent trials, and the median, minimum, and maximum of the trials are

reported.

In this section, we first demonstrate Polaris’ advantage over prior work

when performing HW/SW co-design and software DSE. We then compare the

behavior of our online methods: Spotlight and Polaris.

6.2.1 HW/SW Co-Design

Figure 6.3 compares the EDP of the designs produced by Offline Random,

DOSA, Spotlight, and Polaris when performing HW/SW co-design. The bars

indicate the median of 3 independent trials, and the error bars indicate the

minimum and maximum of the trials.

In the median, Polaris consistently produces designs with the lowest

EDP, and Spotlight always produces designs that achieve lower EDP than those

produced by DOSA. Part of this success can be attributed to the selection of

spatial array size, which is a design parameter that greatly affects EDP and that

is not explored by DOSA. In particular, the 32×32 spatial array is consistently

selected by Polaris and Spotlight because it reduces EDP. On the other hand, for

one trial of ResNet-50, Polaris never selects a 32×32 spatial array, so that trial

achieves significantly higher EDP than the other trials. Similarly, DOSA always

91

Offline
Random

DOSA Spotlight Polaris

2

4

pJ
×C

yc
le

s

1e17 U-Net

Offline
Random

DOSA Spotlight Polaris
1

2

3

4 1e14 ResNet-50

Offline
Random

DOSA Spotlight Polaris

2

4

pJ
×C

yc
le

s

1e13 BERT

Offline
Random

DOSA Spotlight Polaris

1

2

1e14 RetinaNet

4.1× 4.4× 2.3× 1.7× 2.5× 2.1×

11.3× 2.0× 1.5× 3.5× 2.5× 2.2×

Figure 6.3: We compare the best designs produced by Offline Random, DOSA,
Spotlight, and Polaris when performing HW/SW co-design to minimize EDP.
Lower is better. We also present the speedup of the three baselines when
compared to Polaris.

uses a 16×16 spatial array, so it achieves higher EDP than Polaris and Spotlight.

However, the spatial array size is not the sole reason for Polaris’ success; Offline

Random always selects a 32×32 spatial array, but it is unable to select other

commensurate design parameter values, so the designs it produces always result

in higher EDP than both Spotlight and Polaris.

The key takeaway: the online methods, Polaris and Spotlight,

consistently produce designs with lower EDP than the offline methods when

performing HW/SW co-design, and Polaris consistently produces designs with

the lowest median EDP.

6.2.1.1 Software DSE

Because the size of the spatial array greatly affects EDP, we select a fixed

DLA design—specifically, the DLA design selected by DOSA—and only perform

92

Offline
Random

DOSA Spotlight Polaris

2.5

5.0

7.5

pJ
×C

yc
le

s

1e17 U-Net

Offline
Random

DOSA Spotlight Polaris

0.5

1.0

1.5

2.0 1e15 ResNet-50

Offline
Random

DOSA Spotlight Polaris

2

4

pJ
×C

yc
le

s

1e13 BERT

Offline
Random

DOSA Spotlight Polaris

1

2

3 1e14 RetinaNet

1.6× 1.5× 1.4× 1.5× 1.2× 1.5×

1.1× 1.0× 4.5× 1.4× 1.1× 1.3×

Figure 6.4: We compare the best software mappings produced by Offline, DOSA,
Spotlight, and Polaris when performing software DSE to minimize EDP on the
DLA design selected by DOSA. Lower is better.

software DSE to produce software mappings. Figure 6.4 summarizes these results.

We again find that Polaris consistently produces designs that achieve the

lowest EDP, but its improvement over the baselines is smaller. Furthermore, the

EDP achieved when Polaris performs software DSE is consistently higher than

the EDP achieved when Polaris performs HW/SW co-design. These results

corroborate prior work [82, 96] that highlights the importance of performing

HW/SW co-design.

We also find that Spotlight no longer consistently produces software

mappings with lower EDP than those produced by DOSA, and the variance across

trials is significantly higher. The software design space is more challenging to

explore than the hardware design space [48], so we hypothesize that the software

optimizers are unable to find globally optimal software mappings. However,

when given the extra degrees of freedom that come with HW/SW co-design,

optimizers can find a HW/SW configuration that achieves low EDP. So we again

93

0 20 40

1017

1018

1019

pJ
×C

yc
le

s
(lo

g)

U-Net

0 20 40
1014

1015

1016

ResNet-50

0 20 40
Trial

1013

pJ
×C

yc
le

s
(lo

g)

BERT

0 20 40
Trial

1014

1015

RetinaNet

Offline Random
DOSA
Spotlight
Polaris

Figure 6.5: The behavior Polaris and Spotlight when performing HW/SW co-
design. Each segment demarcated by a gray dashed line is a single hardware
candidate, and the solid line indicates the cumulative minimum EDP found thus
far. Lower is better.

observe that HW/SW co-design is instrumental to the automated design of DLAs.

The key takeaway: Polaris consistently produces software mappings that

achieve lower EDP than the baselines when performing software DSE, and in

general it is important to perform HW/SW co-design when designing DLAs.

6.2.1.2 Online Optimization Behavior

Figure 6.5 summarizes our investigation into the behavior of online

optimization when performing HW/SW co-design. The X axis shows the overall

iteration of the hardware and software optimizers, and the gray dashed lines

demarcate the 8 hardware candidates that are evaluated. The Y axis shows the

cumulative minimum EDP that has been achieved thus far. For Polaris and

Spotlight, the solid line indicates the median of 3 independent trials, and the

shaded region indicates the minimum and maximum across the trials.

94

0 5 10 15

1

2

3

4

pJ
×C

yc
le

s

1e18 U-Net

0 5 10 15

0.5

1.0

1.5

2.0 1e15 ResNet-50

0 5 10 15
Trial

1

2

3

4

pJ
×C

yc
le

s

1e13 BERT

0 5 10 15
Trial

2

3

4

5 1e14 RetinaNet

Offline Random
DOSA
Spotlight
Polaris

Figure 6.6: The behavior Polaris and Spotlight when performing software DSE.
The solid line indicates the cumulative minimum EDP found thus far. Lower is
better.

For U-Net, ResNet-50, and BERT, Polaris’ optimization quickly plateaus,

whereas Spotlight’s optimization is more segmented. This behavior is

unsurprising because Polaris is trained on a dataset of RTL simulations, so it

begins the optimization with a noteworthy head-start. Spotlight begins with 3

uniformly random samples to seed the surrogate model, and it continues to learn

the shape of the design space to reduce its achieved EDP. We hypothesize that

Spotlight may eventually produce results on par with Polaris if it is run for more

iterations, but we explain in Section 6.2.2 why Polaris is still a better choice for

HW/SW co-design when the evaluation method is slow.

Finally, across all models and for both Polaris and Spotlight, we observe

that the biggest changes in EDP occur when a new hardware candidate is

selected—i.e., at the grey dashed lines. Again, we conclude that the choice of

hardware candidate plays a significant role in the final achievable EDP, but the

software mappings must carefully be selected to leverage the hardware properly.

95

HW/SW Co-Design SW DSE
Model Spotlight Polaris Spotlight Polaris
U-Net 9.19h 0.35h 2.28h 0.31h
ResNet-50 1.70h 0.29h - 0.44h
BERT 0.98h 0.10h - 0.39h
RetinaNet 1.37h 1.60h 0.41h 0.92h

Table 6.2: The wall-clock time for each online method—when performing
HW/SW co-design and software DSE—to produce designs that achieve lower
EDP than the designs found by DOSA. Lower is better.

Figure 6.6 shows this same analysis when performing software DSE, and

the results are similar for Polaris. For Spotlight, the variance across trials is far

higher. As we noted previously, the software design space is more challenging

to explore than the hardware design space, and Spotlight is unable to reliably

produce software mappings when it is unable to control the hardware design.

The key takeaway: Polaris and Spotlight both find designs with low

EDP when performing HW/SW co-design, but Polaris is more sample-efficient.

Furthermore, the choice of hardware candidate plays a significant role in the

final achievable EDP.

6.2.2 Discussion

Offline Random and DOSA both perform offline optimization, while

Spotlight and Polaris both perform online optimization. Figures 6.3 and 6.4

both clearly illustrate the benefit of performing online optimization: The online

methods always produce better designs than the offline methods.

An important metric to compare the quality of these tools is the amount of

wall-clock time it takes for the online methods to outperform the offline methods.

Table 6.2 presents these results. Within a maximum of 1.6 hours and an average of

35 minutes, Polaris always produces designs that outperform those produced by

DOSA, and the remainder of the time is spent exploring designs that achieve

96

even lower EDP. And because intermediate designs are evaluated using RTL

simulation, both Polaris and Spotlight continuously learn more about the design

space and will likely continue to reduce EDP with each iteration. And the designs

it finds can be trusted to remain high-quality when translated to real hardware.

Spotlight generally takes longer than Polaris to produce designs that

outperform those produced by DOSA. There are two reasons for this. First, Polaris

is warmed up with the dataset of RTL simulations, so it is able to quickly find

designs that achieve low EDP. Second, the RTL simulations for Polaris’ candidate

designs have shorter wall-clock time than that of Spotlight’s candidates designs

because the wall-clock time of RTL simulation is correlated with the delay of the

design being simulated, and Spotlight’s designs typically have higher delay.

Of course, Polaris requires a dataset of RTL simulations to be collected

beforehand, which incurs a one-time cost. However, in practice, Polaris will be

run multiple times over the course of the DLA development cycle, so the cost

of collecting the dataset is amortized. Over time, Polaris provides significantly

higher sample-efficiency than Spotlight, so it is the better choice for HW/SW

co-design when the evaluation method is slow.

In other design situations, such as early in the development cycle when

designs are evaluated using an analytical model, approaches like Spotlight may be

better suited. In particular, Polaris achieves its high sample-efficiency by spending

more wall-clock time than Spotlight to select candidates to evaluate using RTL

simulation. If the evaluation method is fast, then that time may be better spent

evaluating a larger number of candidates.

6.3 Conclusion

In this chapter, we have presented Polaris, which is the first HW/SW

co-design tool that performs RTL simulation in the optimization loop. Polaris

produces designs that reduce the energy-delay product by 2.7× over DOSA and

97

by 5.15× over an ablated version of Polaris that does not perform RTL simulation

in the optimization loop.

The methodology that we have presented in this chapter and in Chapter 5

may be applicable to other areas of hardware design in general where there

is close similarity between low-fidelity evaluation methods and high-fidelity

evaluation methods and where high-fidelity evaluation methods are slow.

Irrespective of its broader applicability, our methodology indicates the importance

of exploiting properties of the problem—e.g., the transferability of knowledge

between low and high fidelity performance models—to design customized design

space exploration tools.

98

Chapter 7: Conclusions

In this dissertation, I have presented techniques that incorporate prior

knowledge to efficiently design deep learning accelerators. I first demonstrated

how to incorporate hand-crafted domain information into a Bayesian optimization

framework so that a domain expert can guide the optimizer to profitable regions

of the design space. I then demonstrated how prior knowledge can be transferred

from a low-fidelity model to a high-fidelity model to efficiently train the latter.

I have also presented three open-source tools that can be used to reduce

the cost and effort of developing DLAs. Spotlight is a HW/SW co-design tool that

can be used in the early stages of the design cycle, when high-level architectural

design decisions are being explored. Polaris is a HW/SW co-design tool that can

be used in the later stages of the design cycle, when RTL simulations are available

and it is necessary to estimate the impact of microarchitectural design decisions,

to automatically tune real hardware parameters. Starlight is the core innovation

the enables Polaris, and it is a data-driven model that predicts the performance of

a design as measured by RTL simulation.

HW/SW co-design is an important procedure that results in efficient

DLA design, which is one of our key tactics to mitigate the burden of the

unbridled growth of AI. As a field, HW/SW co-design is constantly evolving to

accommodate innovations in AI models and applications. I hope that in the near

future it crosses a threshold—like neural architecture search has—that makes it an

integral part of the DLA development process. Not only would this improve the

productivity of thousands of engineers, it would democratize DLA development.

And, with some more work, perhaps it would do for hardware design in general

what frameworks such as TensorFlow have done for AI: give any interested party

the means to translate their creativity into something tangible.

99

References

[1] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation

Importance: A Corrected Feature Importance Measure,” Bioinformatics,

no. 10, May 2010.

[2] T. Bai, Y. Li, Y. Shen, X. Zhang, W. Zhang, and B. Cui, “Transfer Learning

for Bayesian Optimization: A Survey,” arXiv, Feb. 2023.

[3] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” in Data Mining

and Knowledge Discovery Handbook, L. Rokach, O. Maimon, and E. Shmueli,

Eds., 2023.

[4] M. Binois and N. Wycoff, “A Survey on High-dimensional Gaussian Process

Modeling with Application to Bayesian Optimization,” Transactions on

Evolutionary Learning and Optimization, no. 2, Aug. 2022.

[5] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,

T. Ullmann, M. Becker, A.-L. Boulesteix, D. Deng, and M. Lindauer,

“Hyperparameter Optimization: Foundations, Algorithms, Best Practices,

and Open Challenges,” WIREs Data Mining and Knowledge Discovery, no. 2,

2023.

[6] L. Breiman, “Random Forests,” Machine Learning, no. 1, Oct. 2001.

[7] D. Broomhead and D. Lowe, “Multivariable Functional Interpolation and

Adaptive Networks,” Complex Systems, 1988.

[8] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-

Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

100

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei,

“Language Models are Few-Shot Learners,” arXiv, Jul. 2020.

[9] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,

L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “{TVM}:

An Automated {End-to-End} Optimizing Compiler for Deep Learning,” in

Operating Systems Design and Implementation (OSDI), 2018.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao:

A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-

Learning,” Computer Architecture News (CAN), no. 1, Feb. 2014.

[11] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks,”

Solid-State Circuits, no. 1, Jan. 2017.

[12] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible

Accelerator for Emerging Deep Neural Networks on Mobile Devices,”

Emerging and Selected Topics in Circuits and Systems, no. 2, Jun. 2019.

[13] K. Choi, D. Hong, H. Yoon, J. Yu, Y. Kim, and J. Lee, “DANCE:

Differentiable Accelerator/Network Co-Exploration,” in Design Automation

Conference (DAC), Dec. 2021.

[14] A. Damian, J. Lee, and M. Soltanolkotabi, “Neural Networks Can Learn

Representations with Gradient Descent,” in Conference on Learning Theory

(COLT), Jun. 2022.

[15] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava, “dMazeRunner:

Executing Perfectly Nested Loops on Dataflow Accelerators,” Transactions

on Embedded Computing Systems, no. 5s, Oct. 2019.

[16] A. de Vries, “The Growing Energy Footprint of Artificial Intelligence,” Joule,

no. 10, Oct. 2023.

101

[17] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Compute

and Energy Consumption Trends in Deep Learning Inference,” Sustainable

Computing: Informatics and Systems, Apr. 2023.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” arXiv, May

2019.

[19] P. Dhilleswararao, S. Boppu, M. S. Manikandan, and L. R. Cenkeramaddi,

“Efficient Hardware Architectures for Accelerating Deep Neural Networks:

Survey,” IEEE Access, 2022.

[20] H. Esmaeilzadeh, S. Ghodrati, J. Gu, S. Guo, A. B. Kahng, J. K. Kim,

S. Kinzer, R. Mahapatra, S. D. Manasi, E. Mascarenhas, S. S. Sapatnekar,

R. Varadarajan, Z. Wang, H. Xu, B. R. Yatham, and Z. Zeng, “VeriGOOD-

ML: An Open-Source Flow for Automated ML Hardware Synthesis,” in

International Conference on Computer-Aided Design (ICCAD), Nov. 2021.

[21] H. Esmaeilzadeh, S. Ghodrati, A. B. Kahng, J. K. Kim, S. Kinzer, S. Kundu,

R. Mahapatra, S. D. Manasi, S. Sapatnekar, Z. Wang, and Z. Zeng, “An

Open-Source ML-Based Full-Stack Optimization Framework for Machine

Learning Accelerators,” arXiv, Aug. 2023.

[22] H. Esmaeilzadeh, S. Ghodrati, A. B. Kahng, J. K. Kim, S. Kinzer, S. Kundu,

R. Mahapatra, S. D. Manasi, S. S. Sapatnekar, Z. Wang, and Z. Zeng,

“Physically Accurate Learning-Based Performance Prediction of Hardware-

Accelerated ML Algorithms,” in Workshop on Machine Learning for CAD

(MLCAD), Sep. 2022.

[23] M. B. Fazi, “Beyond Human: Deep Learning, Explainability and

Representation,” Theory, Culture & Society, no. 7-8, Dec. 2021.

102

[24] M. Ferianc, H. Fan, D. Manocha, H. Zhou, S. Liu, X. Niu, and W. Luk,

“Improving Performance Estimation for Design Space Exploration for

Convolutional Neural Network Accelerators,” Electronics, no. 4, Jan. 2021.

[25] M. Feurer and F. Hutter, Hyperparameter Optimization, 2019.

[26] M. Feurer, B. Letham, F. Hutter, and E. Bakshy, “Practical Transfer Learning

for Bayesian Optimization,” arXiv, Oct. 2022.

[27] E. C. Fieller, H. O. Hartley, and E. S. Pearson, “Tests for Rank Correlation

Coefficients, I,” Biometrika, no. 3-4, Dec. 1957.

[28] A. I. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity Optimization via

Surrogate Modelling,” Royal Society A: Mathematical, Physical and Engineering

Sciences, no. 2088, Oct. 2007.

[29] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,

R. Triebel, P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and

X. X. Zhu, “A Survey of Uncertainty in Deep Neural Networks,” Artificial

Intelligence Review, no. 1, Oct. 2023.

[30] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,

D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,

I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao, “Gemmini:

Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack

Integration,” in Design Automation Conference (DAC), Dec. 2021.

[31] M. G. Genton, “Classes of Kernels for Machine Learning: A Statistics

Perspective,” Machine Learning Research (JMLR), Mar. 2002.

[32] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,

B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,

R. P. Adams, and A. Aspuru-Guzik, “Automatic Chemical Design Using a

103

Data-Driven Continuous Representation of Molecules,” ACS Central Science,

no. 2, Feb. 2018.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in Computer Vision and Pattern Recognition (CVPR), 2016.

[34] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W. Fletcher,

“Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space

Search,” in Architectural Support for Programming Languages and Operating

Systems (ASPLOS), Apr. 2021.

[35] C. Hong, Q. Huang, G. Dinh, M. Subedar, and Y. S. Shao, “DOSA:

Differentiable Model-Based One-Loop Search for DNN Accelerators,” in

Microarchitecture (MICRO), Dec. 2023.

[36] Q. Huang, C. Hong, J. Wawrzynek, M. Subedar, and Y. S. Shao, “Learning

A Continuous and Reconstructible Latent Space for Hardware Accelerator

Design,” in International Symposium on Performance Analysis of Systems and

Software (ISPASS), May 2022.

[37] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,

J. Wawrzynek, and Y. S. Shao, “CoSA: Scheduling by Constrained

Optimization for Spatial Accelerators,” in International Symposium on

Computer Architecture (ISCA), Jun. 2021.

[38] A. Ivakhnenko and V. Lapa, Cybernetic Predicting Devices, 1965.

[39] L. Jia, Z. Luo, L. Lu, and Y. Liang, “Analyzing the Design Space of

Spatial Tensor Accelerators on FPGAs,” in International Symposium on VLSI

(ISVLSI), Jul. 2021.

[40] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global Optimization

of Expensive Black-Box Functions,” Global Optimization, no. 4, Dec. 1998.

104

[41] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,

S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and

D. A. Patterson, “TPU v4: An Optically Reconfigurable Supercomputer

for Machine Learning with Hardware Support for Embeddings,” in

International Symposium on Computer Architecture (ISCA), Jun. 2023.

[42] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,

G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad,

C. Young, Z. Zhou, and D. Patterson, “Ten Lessons From Three Generations

Shaped Google’s TPUv4i : Industrial Product,” in International Symposium

on Computer Architecture (ISCA), Jun. 2021.

[43] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,

J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,

R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,

R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,

D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,

Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,

K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,

M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,

E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,

A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,

R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance

Analysis of a Tensor Processing Unit,” in International Symposium on

Computer Architecture (ISCA), Jun. 2017.

[44] L. R. Juracy, A. de Morais Amory, and F. G. Moraes, “A Fast, Accurate, and

Comprehensive PPA Estimation of Convolutional Hardware Accelerators,”

Transactions on Circuits and Systems I: Regular Papers, no. 12, Dec. 2022.

105

[45] S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: Autonomous Hardware

Resource Assignment for DNN Accelerators using Reinforcement

Learning,” in Microarchitecture (MICRO), Oct. 2020.

[46] S.-C. Kao and T. Krishna, “GAMMA: Automating the HW Mapping of DNN

Models on Accelerators via Genetic Algorithm,” in International Conference

on Computer-Aided Design (ICCAD), Dec. 2020.

[47] S.-C. Kao, H. Kwon, M. Pellauer, A. Parashar, and T. Krishna, “A Formalism

of DNN Accelerator Flexibility,” Measurement and Analysis of Computing

Systems, no. 2, Jun. 2022.

[48] S.-C. Kao, A. Parashar, P.-A. Tsai, and T. Krishna, “Demystifying Map

Space Exploration for NPUs,” in International Symposium on Workload

Characterization (IISWC), Nov. 2022.

[49] S.-C. Kao, M. Pellauer, A. Parashar, and T. Krishna, “DiGamma: Domain-

aware Genetic Algorithm for HW-Mapping Co-optimization for DNN

Accelerators,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE), Mar. 2022.

[50] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,

N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,

B. Nikolic, R. Katz, J. Bachrach, and K. Asanović, “Firesim: FPGA-

Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud,”

in International Symposium on Computer Architecture (ISCA), Jun. 2018.

[51] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne, and

M. Burrows, “A Learned Performance Model for Tensor Processing Units,”

in Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica, Eds.,

2021.

106

[52] S. Kim, J. Wang, Y. Seo, S. Lee, Y. Park, S. Park, and C. S. Park, “Transaction-

level Model Simulator for Communication-Limited Accelerators,” arXiv, Jul.

2020.

[53] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

arXiv, Jan. 2017.

[54] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv,

Dec. 2022.

[55] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,

T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis, and K. Olukotun, “Spatial:

A language and compiler for application accelerators,” in Programming

Language Design and Implementation (PLDI), Jun. 2018.

[56] E. Korneeva, N. Olinder, and W. Strielkowski, “Consumer Attitudes to the

Smart Home Technologies and the Internet of Things (IoT),” Energies, no. 23,

Jan. 2021.

[57] S. Krishnan, A. Yazdanbakhsh, S. Prakash, J. Jabbour, I. Uchendu, S. Ghosh,

B. Boroujerdian, D. Richins, D. Tripathy, A. Faust, and V. Janapa Reddi,

“ArchGym: An Open-Source Gymnasium for Machine Learning Assisted

Architecture Design,” in International Symposium on Computer Architecture

(ISCA), Jun. 2023.

[58] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals

of Mathematical Statistics, no. 1, 1951.

[59] A. Kumar, A. Yazdanbakhsh, M. Hashemi, K. Swersky, and S. Levine,

“Data-Driven Offline Optimization for Architecting Hardware

Accelerators,” in International Conference on Learning Representations

(ICLR), Oct. 2021.

107

[60] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar,

“MAESTRO: A Data-Centric Approach to Understand Reuse, Performance,

and Hardware Cost of DNN Mappings,” IEEE Micro, no. 3, May 2020.

[61] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible Dataflow

Mapping over DNN Accelerators via Reconfigurable Interconnects,” in

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), Mar. 2018.

[62] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring Strategies

for Training Deep Neural Networks,” Machine Learning Research (JMLR),

no. 1, 2009.

[63] A. Lavely, “Powering Extreme-Scale HPC with Cerebras Wafer- Scale

Accelerators,” Cerebras Systems, Inc, Tech. Rep., 2022.

[64] Y. L. Li, T. G. J. Rudner, and A. G. Wilson, “A Study of Bayesian Neural

Network Surrogates for Bayesian Optimization,” arXiv, May 2023.

[65] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and D. Chen,

“EDD: Efficient Differentiable DNN Architecture and Implementation Co-

search for Embedded AI Solutions,” in Design Automation Conference (DAC),

Jul. 2020.

[66] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense

Object Detection,” in International Conference on Computer Vision (ICCV),

2017.

[67] Y. Lin, M. Yang, and S. Han, “NAAS: Neural Accelerator Architecture

Search,” in Design Automation Conference (DAC), Dec. 2021.

[68] L. Lu, N. Guan, Y. Wang, L. Jia, Z. Luo, J. Yin, J. Cong, and Y. Liang,

“TENET: A Framework for Modeling Tensor Dataflow Based on Relation-

108

centric Notation,” in International Symposium on Computer Architecture

(ISCA), Jun. 2021.

[69] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim,

and H. Esmaeilzadeh, “TABLA: A unified template-based framework for

accelerating statistical machine learning,” in High-Performance Computer

Architecture (HPCA), Mar. 2016.

[70] F. Martı́nez-Plumed, S. Avin, M. Brundage, A. Dafoe, S. Ó. hÉigeartaigh,

and J. Hernández-Orallo, “Accounting for the Neglected Dimensions of AI

Progress,” arXiv, Jun. 2018.

[71] N. Maslej, L. Fattorini, E. Brynjolfsson, J. Etchemendy, K. Ligett, T. Lyons,

J. Manyika, H. Ngo, V. Parli, Y. Shoham, R. Wald, J. Clark, and R. Perrault,

“The AI Index 2023 Annual Report,” Institute for Human-Centered AI,

Tech. Rep., Apr. 2023.

[72] B. Matérn, Spatial Variation, D. Brillinger, S. Fienberg, J. Gani, J. Hartigan,

and K. Krickeberg, Eds., 1986.

[73] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “ZigZag:

Enlarging Joint Architecture-Mapping Design Space Exploration for DNN

Accelerators,” Transactions on Computers, no. 8, Aug. 2021.

[74] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,

Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy, “A Hardware–

Software Blueprint for Flexible Deep Learning Specialization,” IEEE Micro,

no. 5, Sep. 2019.

[75] F. Muñoz-Martı́nez, J. L. Abellán, M. E. Acacio, and T. Krishna, “STONNE:

Enabling Cycle-Level Microarchitectural Simulation for DNN Inference

Accelerators,” in International Symposium on Workload Characterization

(IISWC), Nov. 2021.

109

[76] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A

Tool to Model Large Caches,” HP Laboratories, Tech. Rep., 2009.

[77] L. Nardi, D. Koeplinger, and K. Olukotun, “Practical Design Space

Exploration,” in Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), Oct. 2019.

[78] A. Ng, “The Deep Learning Specialization.”

[79] NVIDIA, “NVIDIA Deep Learning Accelerator,” NVIDIA, Tech. Rep., 2017.

[80] J. Ong, “C++ Neural Network in a Weekend,” Oct. 2020.

[81] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” Transactions on

Knowledge and Data Engineering, no. 10, Oct. 2010.

[82] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,

R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A

Systematic Approach to DNN Accelerator Evaluation,” in International

Symposium on Performance Analysis of Systems and Software (ISPASS), Mar.

2019.

[83] D. Patterson, J. Gonzalez, U. Hölzle, Q. Le, C. Liang, L.-M. Munguia,

D. Rothchild, D. R. So, M. Texier, and J. Dean, “The Carbon Footprint of

Machine Learning Training Will Plateau, Then Shrink,” Computer, no. 7, Jul.

2022.

[84] B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gelbart, P. Whatmough,

G.-Y. Wei, and D. Brooks, “A Case for Efficient Accelerator Design Space

Exploration via Bayesian Optimization,” in International Symposium on Low

Power Electronics and Design (ISLPED), Jul. 2017.

[85] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks

for Biomedical Image Segmentation,” in Medical Image Computing and

110

Computer-Assisted Intervention (MICCAI), N. Navab, J. Hornegger, W. M.

Wells, and A. F. Frangi, Eds., 2015.

[86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal

Representations by Error Propagation,” in Explorations in the Microstructure

of Cognition, Jan. 1986.

[87] C. Sakhuja, Z. Shi, and C. Lin, “Leveraging Domain Information for

the Efficient Automated Design of Deep Learning Accelerators,” in High-

Performance Computer Architecture (HPCA), Feb. 2023.

[88] A. Samajdar, J. M. Joseph, and T. Krishna, “AIrchitect: Automating

Hardware Architecture and Mapping Optimization,” in Design, Automation

& Test in Europe Conference & Exhibition (DATE), Apr. 2023.

[89] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and

T. Krishna, “A Systematic Methodology for Characterizing Scalability

of DNN Accelerators using SCALE-Sim,” in International Symposium on

Performance Analysis of Systems and Software (ISPASS), Aug. 2020.

[90] SambaNova, “Accelerated Computing with a Reconfigurable Dataflow

Architecture,” Tech. Rep., 2021.

[91] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in Computer

Vision and Pattern Recognition (CVPR), 2018.

[92] M. Seeger, “Gaussian Processes for Machine Learning,” International Journal

of Neural Systems, no. 02, Apr. 2004.

[93] L. Sekanina, “Neural Architecture Search and Hardware Accelerator Co-

Search: A Survey,” IEEE Access, 2021.

111

[94] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos,

“Compute Trends Across Three Eras of Machine Learning,” in International

Joint Conference on Neural Networks (IJCNN), Jul. 2022.

[95] J. Shalf, “The Future of Computing Beyond Moore’s Law,” Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, no. 2166, Jan. 2020.

[96] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,

B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J.

Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler, “Simba: Scaling

Deep-Learning Inference with Multi-Chip-Module-Based Architecture,” in

Microarchitecture (MICRO), Oct. 2019.

[97] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” in International Conference on Learning

Representations (ICLR), 2015.

[98] I. M. Sobol’, “On the Distribution of Points in a Cube and the Approximate

Evaluation of Integrals,” Zhurnal Vychislitel’noi Matematiki i Matematicheskoi

Fiziki, no. 4, 1967.

[99] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian Process

Optimization in the Bandit Setting: No Regret and Experimental Design,”

in International Conference on Machine Learning (ICML), Jun. 2010.

[100] A. Stjerngren, P. Gibson, and J. Cano, “Bifrost: End-to-End Evaluation

and Optimization of Reconfigurable DNN Accelerators,” in International

Symposium on Performance Analysis of Systems and Software (ISPASS), May

2022.

112

[101] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy

Considerations for Deep Learning in NLP,” in Association for Computational

Linguistics (ACL), A. Korhonen, D. Traum, and L. Màrquez, Eds., Jul. 2019.

[102] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep

Neural Networks: A Tutorial and Survey,” IEEE, no. 12, Dec. 2017.

[103] E.-G. Talbi, “Automated Design of Deep Neural Networks: A Survey and

Unified Taxonomy,” Computing Surveys, no. 2, Mar. 2021.

[104] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.

Le, “MnasNet: Platform-Aware Neural Architecture Search for Mobile,” in

Computer Vision and Pattern Recognition (CVPR), 2019.

[105] N. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The

Computational Limits of Deep Learning,” in Computing Within Limits, Jun.

2023.

[106] S. Tuli, C.-H. Li, R. Sharma, and N. K. Jha, “CODEBench: A

Neural Architecture and Hardware Accelerator Co-Design Framework,”

Transactions on Embedded Computing Systems, no. 3, Apr. 2023.

[107] M. Vaidya, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,

“Comprehensive Accelerator-Dataflow Co-design Optimization for

Convolutional Neural Networks,” in Code Generation and Optimization

(CGO), Apr. 2022.

[108] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” in Advances in

Neural Information Processing Systems (NeurIPS), 2017.

[109] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller,

A. Klinefelter, N. Pinckney, P. Raina, Y. Zhang, B. Zimmer, W. J. Dally,

113

J. Emer, S. W. Keckler, and B. Khailany, “MAGNet: A Modular Accelerator

Generator for Neural Networks,” in International Conference on Computer-

Aided Design (ICCAD), Nov. 2019.

[110] J. Wang, L. Guo, and J. Cong, “AutoSA: A Polyhedral Compiler for High-

Performance Systolic Arrays on FPGA,” in Field-Programmable Gate Arrays

(FPGA), Feb. 2021.

[111] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “DSAGEN:

Synthesizing programmable spatial accelerators,” in International

Symposium on Computer Architecture (ISCA), Sep. 2020.

[112] C. White, M. Safari, R. Sukthanker, B. Ru, T. Elsken, A. Zela, D. Dey, and

F. Hutter, “Neural Architecture Search: Insights from 1000 Papers,” arXiv,

Jan. 2023.

[113] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful

Visual Performance Model for Multicore Architectures,” Communications of

the ACM, no. 4, 2009.

[114] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep Kernel

Learning,” in Artificial Intelligence and Statistics (AISTATS), May 2016.

[115] M. Wistuba and J. Grabocka, “Few-Shot Bayesian Optimization with Deep

Kernel Surrogates,” arXiv, Jan. 2021.

[116] M. J. Wolfe, “Optimizing Supercompilers for Supercomputers,” Ph.D.

dissertation, University of Illinois at Urbana-Champaign, 1982.

[117] D. Wright, C. Igel, G. Samuel, and R. Selvan, “Efficiency is Not Enough: A

Critical Perspective of Environmentally Sustainable AI,” arXiv, Sep. 2023.

[118] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,

and K. Keutzer, “FBNet: Hardware-Aware Efficient ConvNet Design via

114

Differentiable Neural Architecture Search,” in Conference on Computer Vision

and Pattern Recognition (CVPR), 2019.

[119] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An Architecture-Level

Energy Estimation Methodology for Accelerator Designs,” in International

Conference on Computer-Aided Design (ICCAD), Nov. 2019.

[120] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop:

An Analytical Approach To Sparse Tensor Accelerator Modeling,” in

Microarchitecture (MICRO), Oct. 2022.

[121] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and D. Brooks,

“SMAUG: End-to-End Full-Stack Simulation Infrastructure for Deep

Learning Workloads,” Transactions on Architecture and Code Optimization

(TACO), no. 4, Nov. 2020.

[122] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang, “HASCO: Towards

Agile HArdware and Software CO-design for Tensor Computation,” in

International Symposium on Computer Architecture (ISCA), Jun. 2021.

[123] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,

D. Chen, and Y. Lin, “AutoDNNchip: An Automated DNN Chip Predictor

and Builder for Both FPGAs and ASICs,” in Field-Programmable Gate Arrays

(FPGA), Feb. 2020.

[124] R. Xu, S. Ma, Y. Guo, and D. Li, “A Survey of Design and Optimization for

Systolic Array Based DNN Accelerators,” Computing Surveys, Jun. 2023.

[125] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,

P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using Halide’s

Scheduling Language to Analyze DNN Accelerators,” in Architectural

Support for Programming Languages and Operating Systems (ASPLOS), Mar.

2020.

115

[126] A. Yazdanbakhsh, B. Akin, and K. K. Seshadri, “An Evalution of Edge TPU

Accelerators for Convolutional Neural Networks,” arXiv, 2021.

[127] A. Yazdanbakhsh, C. Angermueller, B. Akin, Y. Zhou, A. Jones, M. Hashemi,

K. Swersky, S. Chatterjee, R. Narayanaswami, and J. Laudon, “Apollo:

Transferable Architecture Exploration,” Workshop on ML for Systems, 2020.

[128] Z. Zeng and S. S. Sapatnekar, “Energy-efficient Hardware Acceleration of

Shallow Machine Learning Applications,” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), Apr. 2023.

[129] D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and

A. Mirhoseini, “A Full-Stack Search Technique for Domain Optimized Deep

Learning Accelerators,” in Architectural Support for Programming Languages

and Operating Systems (ASPLOS), Feb. 2022.

[130] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A

Comprehensive Survey on Transfer Learning,” IEEE, no. 1, Jan. 2021.

[131] B. Zoph and Q. Le, “Neural Architecture Search with Reinforcement

Learning,” in International Conference on Learning Representations (ICLR),

2017.

116

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Chapter 2: Background
	Convolution Operation
	Deep Learning Accelerators
	Bayesian Optimization and Gaussian Processes
	Selected Machine Learning Techniques
	Transfer Learning
	Variational Autoencoders
	Deep Kernel Learning

	Chapter 3: Related Work
	Evaluation Frameworks
	Fast Evaluation
	Slow Evaluation

	DSE Tools
	Overview of Prior DSE Tools
	HW/SW Co-Design

	Chapter 4: Spotlight
	Co-Design Space
	Parameter Space
	Cardinal, Ordinal, and Categorical Parameters
	Feature Space

	Domain-Aware BO
	Surrogate Model
	Acquisition Function

	Spotlight
	Layerwise Optimization
	Candidate Evaluation

	Evaluation
	Single-Model Co-Design
	Multi-Model Co-Design
	Discussion
	Feature Space Analysis
	Ablation Study

	Conclusion

	Chapter 5: Starlight
	Motivating Studies
	Spotlight's Accuracy
	Transfer Learning

	Model Design
	Inputs and Outputs
	Dataset
	Starlight-Low
	Starlight

	Evaluation
	Accuracy

	Robustness
	Feature Importance

	Conclusion

	Chapter 6: Polaris
	Polaris
	Co-Design Space
	Iterative Hardware-Software Design
	Hardware Optimizer
	Layerwise Software Optimizer

	Evaluation
	HW/SW Co-Design
	Discussion

	Conclusion

	Chapter 7: Conclusions
	References

